نوآوری در تدوین استراتژی‌ پایدار مدیریت منابع آبی صنعت کشاورزی با رویکردی چندبعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری استراتژی صنعتی، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران.

3 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده
در سال‌های اخیر، آب به‍عنوان یک منبع کم‍یاب در بسیاری از کشورها، به‍ویژه ایران، تبدیل شده است. این پژوهش به بررسی استراتژی‌های توسعه پایدار در‍بخش آب و صنعت کشاورزی می‌پردازد و هدف اصلی آن ارتقاء کارایی مصرف آب از طریق طراحی راهبردهای مؤثر است. برای دستیابی به این هدف، دو روش سناریو اکتشافی و پس‌نگری به‍کار گرفته شده‍‌اند. در مرحله اول، با استفاده از روش سناریونویسی اکتشافی، سناریوهای اصلی شناسایی و تصمیمات کلیدی استخراج شدند. سپس، با بهره‌گیری از تحلیل استواری، اولویت این تصمیمات مورد بررسی قرار گرفت. در مرحله بعدی، با استفاده از روش پس‌نگری، آینده مطلوب ترسیم و مسیرهای رسیدن به آن مشخص شد. این مسیرها با استفاده از تکنیک دلفی مورد ارزیابی قرار گرفتند تا مهم‌ترین آن‌ها شناسایی شوند.نتایج حاصل از هر دو روش نشان‌دهنده استواری گزینه‍های اهمیت سرمایه‌گذاری در زیرساخت‌های آبی، توسعه کشت‌های مقاوم به خشکی و شوری و افزایش بازچرخانی و استفاده مجدد از آب است. همچنین مشخص شد که این دو روش به‍نوعی تمام کننده یکدیگر بوده و مسیرها و تصمیمات مکملی را ارائه می‌دهند. این پژوهش می‌تواند مبنای مناسبی برای سیاست‌گذاران و برنامه‌ریزان درجهت مدیریت پایدار منابع آب در بخش کشاورزی باشد.

کلیدواژه‌ها


عنوان مقاله English

Innovation in formulating a sustainable strategy for water resources management in the agricultural industry employing a multidimensional approach

نویسندگان English

Siamak Nabegh vatan 1
Mahmoud Dehghan nayeri 2
khadijeh mostafaee dolatabad 3
1 PhD Student in Industrial Strategy, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
2 Associate Prof., Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
3 Assistant Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
چکیده English

Recently, water has become a scarce resource in many countries, particularly in Iran. This study examines sustainable development strategies in the water sector and the agricultural industry, with the main aim of enhancing water consumption efficiency through the design of effective strategies. To achieve this goal, two methods of exploratory scenario writing and backcasting were employed. In the first phase, key scenarios were identified and critical decisions were extracted using exploratory scenario writing. Subsequently, the priority of these decisions was assessed through robustness analysis. In the next phase, backcasting was utilized to outline a desirable future and identify pathways to achieve it. These pathways were evaluated using the Delphi technique to identify the most significant ones. The results from both methods indicate the robustness of options emphasizing investment in water infrastructure, development of drought and salinity-resistant crops, and increased water recycling. It was also found that these two methods complement each other, providing complementary pathways and decisions. This research can serve as a solid foundation for policymakers and planners in managing sustainable water resources in the agricultural sector.

کلیدواژه‌ها English

Water
Agricultural Industry
Scenario
Strategy
Backcasting
[1].    Ghanian, M., & Mohaamdzadeh, L. (2019). Analyzing the farmers’ professional competencies needed against climate change; the case study of Southern Basin of Urmia Lake. Geography and Environmental Planning, 30(3), 115-136. DOI: https://doi.org/10.22108/gep.2020.118923.1198
[2].    Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352. DOI: https://doi.org/10.1016/j.compag.2021.106352
[3].    Abdar, Z. K., Amirtaimoori, S., Mehrjerdi, M. R. Z., & Boshrabadi, H. M. (2022). A composite index for assessment of agricultural sustainability: The case of Iran. Environmental Science and Pollution Research, 29(31), 47337-47349. DOI: https://doi.org/10.1007/s11356-022-19154-6
[4].    Andreotti, F., Speelman, E. N., Van den Meersche, K., & Allinne, C. (2020). Combining participatory games and backcasting to support collective scenario evaluation: an action research approach for sustainable agroforestry landscape management. Sustainability Science, 15(5), 1383-1399. DOI: https://doi.org/10.1007/s11625-020-00829-3
[5].    Karimov, A. K., Smakhtin, V., Mavlonov, A., Borisov, V., Gracheva, I., Miryusupov, F., ... & Karimov, A. A. (2015). Managed aquifer recharge: potential component of water management in the Syrdarya River Basin. Journal of Hydrologic Engineering, 20(3), B5014004. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001046
[6].    Sharma, S., Verma, K., & Hardaha, P. (2023). Implementation of artificial intelligence in agriculture. Journal of Computational and Cognitive Engineering, 2(2), 155-162. DOI: https://doi.org/10.47852/bonviewJCCE2202174
[7].    Mendoza, H. D., & Cruz, S. O. (2023). From Power to Foresight: Reimagining Pathways of Land Use and Water Governance Futures. Journal of Futures Studies, 27(3), 137-146.. DOI: https://doi.org/10.6531/JFS.202303_27(3).0010
[8].    Yeke Zare, Mohsen, Rezaei Pendari, & Abbas. (2021). Designing a structural-interpretive model of successful technology transfer factors towards achieving sustainable development. Management Research in Iran, 20(1), 61-80.‎ Short link: https://mri.modares.ac.ir/article_385.html.  [In Persian]
[9].    Behroozeh, S., Hayati, D., & Karami, E. (2022). Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses. Technological Forecasting and Social Change, 185, 122077. DOI: https://doi.org/10.1016/j.techfore.2022.122077
[10].    Sridhar, A., Balakrishnan, A., Jacob, M. M., Sillanpää, M., & Dayanandan, N. (2023). Global impact of COVID-19 on agriculture: role of sustainable agriculture and digital farming. Environmental Science and Pollution Research, 30(15), 42509-42525. DOI: https://doi.org/10.1007/s11356-022-19358-w
[11].    Ahmadaali, J., Barani, G. A., Qaderi, K., & Hessari, B. (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water, 10(2), 160. DOI: https://doi.org/10.3390/w10020160
[12].    Ahmadikord, Hojat, Yaghoubi, & Mohammadi. (2016). Presenting a fuzzy optimization model for sustainable design of urban wastewater collection and transportation network for agricultural use under uncertainty (Case study: Tehran province). Modern Research in Decision Making, 4(1), 1-24. Short link: http://noo.rs/Soz3k. [In Persian].
[13].    Devkota, K. P., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agricultural Systems, 198, 103390. DOI: https://doi.org/10.1016/j.agsy.2022.103390
[14].    Lu, C., Ji, W., Hou, M., Ma, T., & Mao, J. (2022). Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agricultural Water Management, 266, 107605. DOI: https://doi.org/10.1016/j.agwat.2022.107605
[15].    Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. DOI: https://doi.org/10.1016/j.nexus.2022.100124
[16].    Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. DOI: https://doi.org/10.3390/agriculture12101745
[17].    Dahal, B., Avellán, T., Haghighi, A. T., & Kløve, B. (2023). Defining sustainability in agricultural water management using a Delphi survey technique. Water Policy, 25(6), 597-621. DOI: http://orcid.org/0000-0002-1022-2745
[18].    Zhang, C. Y., & Oki, T. (2023). Water pricing reform for sustainable water resources management in China’s agricultural sector. Agricultural Water Management, 275, 108045. DOI: https://doi.org/10.1016/j.agwat.2022.108045
[19].    MacPherson, J., Voglhuber-Slavinsky, A., Olbrisch, M., Schöbel, P., Dönitz, E., Mouratiadou, I., & Helming, K. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agronomy for Sustainable Development, 42(4), 70. DOI: https://doi.org/10.1007/s13593-022-00792-6
[20].    Mazrouei Nasrabadi, & Sadeghi Arani. (2023). Strategic analysis of factors influencing the adoption of Industry 4.0 in healthcare: A scenario analysis approach. Modern Research in Decision Making, 8(3), 79-102.‎ Short link: https://journal.saim.ir/article_711244.html. [In Persian].
[21].    Song, S., Zhang, L., & Ma, Y. (2023). Evaluating the impacts of technological progress on agricultural energy consumption and carbon emissions based on multi-scenario analysis. Environmental Science and Pollution Research, 30(6), 16673-16686. DOI: https://doi.org/10.1007/s11356-022-23376-z
[22].    Jiren, T. S., Abson, D. J., Schultner, J., Riechers, M., & Fischer, J. (2023). Bridging scenario planning and backcasting: AQ‐analysis of divergent stakeholder priorities for future landscapes. People and Nature, 5(2), 572-590. DOI: https://doi.org/10.1002/pan3.10441
[23].    Jafarpour, Sepehr, Khodadad Hosseini, & Kardanaij. (2023). Analyzing the strategic robustness of businesses active in the smart agriculture sector of Iran. Management Research in Iran, 27(1), 92-116. Short link: https://mri.modares.ac.ir/article_618.html.  [In Persian].
[24].    ‎ De Ruijter, P. (2016). Scenario based strategy: navigate the future. Routledge. DOI: https://doi.org/10.4324/9781315607689
[25].    Goswami, R., Roy, K., Dutta, S., Ray, K., Sarkar, S., Brahmachari, K., ... & Majumdar, K. (2021). Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agricultural Systems, 189, 103051. DOI: https://doi.org/10.1016/j.agsy.2021.103051
[26].    Walker, L., Hischier, I., & Schlueter, A. (2022). Scenario-based robustness assessment of building system life cycle performance. Applied Energy, 311, 118606. DOI: https://doi.org/10.1016/j.apenergy.2022.118606
[27].    Kumar, A., & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954. DOI: https://doi.org/10.1016/j.mex.2022.101954
[28].    Gao, P., Xie, Y., Song, C., Cheng, C., & Ye, S. (2023). Exploring detailed urban-rural development under intersecting population growth and food production scenarios: Trajectories for China’s most populous agricultural province to 2030. Journal of Geographical Sciences, 33(2), 222-244. DOI: https://doi.org/10.1007/s11442-023-2080-3
[29].    Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. DOI: https://doi.org/10.1016/j.aac.2022.10.001
[30].    Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for Rainfed Cereal Yields in Northern Togo. Sci, 3(1), 17. DOI: https://doi.org/10.3390/sci3010017