[1]. Ghanian, M., & Mohaamdzadeh, L. (2019). Analyzing the farmers’ professional competencies needed against climate change; the case study of Southern Basin of Urmia Lake. Geography and Environmental Planning, 30(3), 115-136. DOI: https://doi.org/10.22108/gep.2020.118923.1198
[2]. Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352. DOI: https://doi.org/10.1016/j.compag.2021.106352
[3]. Abdar, Z. K., Amirtaimoori, S., Mehrjerdi, M. R. Z., & Boshrabadi, H. M. (2022). A composite index for assessment of agricultural sustainability: The case of Iran. Environmental Science and Pollution Research, 29(31), 47337-47349. DOI: https://doi.org/10.1007/s11356-022-19154-6
[4]. Andreotti, F., Speelman, E. N., Van den Meersche, K., & Allinne, C. (2020). Combining participatory games and backcasting to support collective scenario evaluation: an action research approach for sustainable agroforestry landscape management. Sustainability Science, 15(5), 1383-1399. DOI: https://doi.org/10.1007/s11625-020-00829-3
[5]. Karimov, A. K., Smakhtin, V., Mavlonov, A., Borisov, V., Gracheva, I., Miryusupov, F., ... & Karimov, A. A. (2015). Managed aquifer recharge: potential component of water management in the Syrdarya River Basin. Journal of Hydrologic Engineering, 20(3), B5014004. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001046
[6]. Sharma, S., Verma, K., & Hardaha, P. (2023). Implementation of artificial intelligence in agriculture. Journal of Computational and Cognitive Engineering, 2(2), 155-162. DOI: https://doi.org/10.47852/bonviewJCCE2202174
[7]. Mendoza, H. D., & Cruz, S. O. (2023). From Power to Foresight: Reimagining Pathways of Land Use and Water Governance Futures. Journal of Futures Studies, 27(3), 137-146.. DOI: https://doi.org/10.6531/JFS.202303_27(3).0010
[8]. Yeke Zare, Mohsen, Rezaei Pendari, & Abbas. (2021). Designing a structural-interpretive model of successful technology transfer factors towards achieving sustainable development. Management Research in Iran, 20(1), 61-80. Short link: https://mri.modares.ac.ir/article_385.html. [In Persian]
[9]. Behroozeh, S., Hayati, D., & Karami, E. (2022). Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses. Technological Forecasting and Social Change, 185, 122077. DOI: https://doi.org/10.1016/j.techfore.2022.122077
[10]. Sridhar, A., Balakrishnan, A., Jacob, M. M., Sillanpää, M., & Dayanandan, N. (2023). Global impact of COVID-19 on agriculture: role of sustainable agriculture and digital farming. Environmental Science and Pollution Research, 30(15), 42509-42525. DOI: https://doi.org/10.1007/s11356-022-19358-w
[11]. Ahmadaali, J., Barani, G. A., Qaderi, K., & Hessari, B. (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water, 10(2), 160. DOI: https://doi.org/10.3390/w10020160
[12]. Ahmadikord, Hojat, Yaghoubi, & Mohammadi. (2016). Presenting a fuzzy optimization model for sustainable design of urban wastewater collection and transportation network for agricultural use under uncertainty (Case study: Tehran province). Modern Research in Decision Making, 4(1), 1-24. Short link: http://noo.rs/Soz3k. [In Persian].
[13]. Devkota, K. P., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agricultural Systems, 198, 103390. DOI: https://doi.org/10.1016/j.agsy.2022.103390
[14]. Lu, C., Ji, W., Hou, M., Ma, T., & Mao, J. (2022). Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agricultural Water Management, 266, 107605. DOI: https://doi.org/10.1016/j.agwat.2022.107605
[15]. Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. DOI: https://doi.org/10.1016/j.nexus.2022.100124
[16]. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. DOI: https://doi.org/10.3390/agriculture12101745
[17]. Dahal, B., Avellán, T., Haghighi, A. T., & Kløve, B. (2023). Defining sustainability in agricultural water management using a Delphi survey technique. Water Policy, 25(6), 597-621. DOI: http://orcid.org/0000-0002-1022-2745
[18]. Zhang, C. Y., & Oki, T. (2023). Water pricing reform for sustainable water resources management in China’s agricultural sector. Agricultural Water Management, 275, 108045. DOI: https://doi.org/10.1016/j.agwat.2022.108045
[19]. MacPherson, J., Voglhuber-Slavinsky, A., Olbrisch, M., Schöbel, P., Dönitz, E., Mouratiadou, I., & Helming, K. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agronomy for Sustainable Development, 42(4), 70. DOI: https://doi.org/10.1007/s13593-022-00792-6
[20]. Mazrouei Nasrabadi, & Sadeghi Arani. (2023). Strategic analysis of factors influencing the adoption of Industry 4.0 in healthcare: A scenario analysis approach. Modern Research in Decision Making, 8(3), 79-102. Short link: https://journal.saim.ir/article_711244.html. [In Persian].
[21]. Song, S., Zhang, L., & Ma, Y. (2023). Evaluating the impacts of technological progress on agricultural energy consumption and carbon emissions based on multi-scenario analysis. Environmental Science and Pollution Research, 30(6), 16673-16686. DOI: https://doi.org/10.1007/s11356-022-23376-z
[22]. Jiren, T. S., Abson, D. J., Schultner, J., Riechers, M., & Fischer, J. (2023). Bridging scenario planning and backcasting: AQ‐analysis of divergent stakeholder priorities for future landscapes. People and Nature, 5(2), 572-590. DOI: https://doi.org/10.1002/pan3.10441
[23]. Jafarpour, Sepehr, Khodadad Hosseini, & Kardanaij. (2023). Analyzing the strategic robustness of businesses active in the smart agriculture sector of Iran. Management Research in Iran, 27(1), 92-116. Short link: https://mri.modares.ac.ir/article_618.html. [In Persian].
[24]. De Ruijter, P. (2016). Scenario based strategy: navigate the future. Routledge. DOI: https://doi.org/10.4324/9781315607689
[25]. Goswami, R., Roy, K., Dutta, S., Ray, K., Sarkar, S., Brahmachari, K., ... & Majumdar, K. (2021). Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agricultural Systems, 189, 103051. DOI: https://doi.org/10.1016/j.agsy.2021.103051
[26]. Walker, L., Hischier, I., & Schlueter, A. (2022). Scenario-based robustness assessment of building system life cycle performance. Applied Energy, 311, 118606. DOI: https://doi.org/10.1016/j.apenergy.2022.118606
[27]. Kumar, A., & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954. DOI: https://doi.org/10.1016/j.mex.2022.101954
[28]. Gao, P., Xie, Y., Song, C., Cheng, C., & Ye, S. (2023). Exploring detailed urban-rural development under intersecting population growth and food production scenarios: Trajectories for China’s most populous agricultural province to 2030. Journal of Geographical Sciences, 33(2), 222-244. DOI: https://doi.org/10.1007/s11442-023-2080-3
[29]. Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. DOI: https://doi.org/10.1016/j.aac.2022.10.001
[30]. Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for Rainfed Cereal Yields in Northern Togo. Sci, 3(1), 17. DOI: https://doi.org/10.3390/sci3010017