ارزیابی بلوغ کلان داده در دانشگاه‌های دولتی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مدیریت، دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا‌ (س)، تهران، ایران

2 دانشیار، گروه مدیریت، دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا (س)، تهران، ایران

3 دکترای مدیریت فناوری اطلاعات، گروه مدیریت، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

چکیده
دانشگاه‌ها، سازمان‌های تأثیرگذار و مهمی در جامعه هستند که حجم داده‌ها و اطلاعات زیادی در آنها تولید و استفاده می‌شود. باتوجه‌به اهمیت استفاده از فناوری کلان‌داده در دانشگاه‌ها، ضرورت دارد که بررسی شود، دانشگاه‌های ایران تا چه اندازه در موضوع کلان داده پیشرفت کرده‌اند. هدف این مقاله، ارزیابی بلوغ کلان‌داده در دانشگاه‌های دولتی ایران است. برای رسیدن به این هدف از مدل TDWI برای ارزیابی بلوغ کلان‌داده در دانشگاه‌های دولتی ایران استفاده شده است. این تحقیق از نظر هدف، کاربردی و از نظر روش توصیفی - پیمایشی است. جامعه آماری این تحقیق شامل کلیه مدیران فناوری اطلاعات دانشگاه‌های دولتی ایران به تعداد ۱۴۱ نفر است. نتایج حاصل از تحلیل‌ها نشان داد که ۲ دانشگاه در مرحله نوپا، ۲۷ دانشگاه در مرحله اولیه، ۱۶ دانشگاه در مرحله تثبیت شده و ۵ دانشگاه در مرحله بالغ هستند وهیچ دانشگاهی در سطح پیشرفته از مدل بلوغ شناسایی نشد. همچنین نتایج حاکی از آن بود که میانگین سطح بلوغ کلان‌داده در بین دانشگاه‌های تهران و شهرستان با هم تفاوت معناداری دارند. در این تحقیق برای هرکدام از دانشگاه‌های شرکت‌کننده در پیمایش بر اساس نتایج حاصل شده، توصیه‌هایی جهت ارتقای بلوغ کلان‌داده ارائه شده است.

کلیدواژه‌ها


عنوان مقاله English

Evaluation of Big Data Maturity in Iranian Public Universities

نویسندگان English

hanieh moidian 1
آمنه khadivar 2
samaneh rahimian 3
1 Master's degree, Department of Management, Faculty of Social Sciences and Economics, Al-Zahra University (S), Tehran, Iran
2 Associate Professor, Department of Management, Faculty of Social Sciences and Economics, Al-Zahra University (S), Tehran, Iran
3 PhD in Information Technology Management, Department of Management, Faculty of Management, University of Tehran, Tehran, Iran
چکیده English

Universities are influential and important organizations in society, where large amounts of data and information are produced and used. Considering the importance of using big data technology in universities, it is necessary to check how far Iranian universities have progressed in the subject of big data. The purpose of this article is to evaluate the maturity of big data in Iran's public universities. To achieve this goal, the TDWI model has been used to evaluate the maturity of big data in Iranian public universities. The questionnaire was sent to the entire statistical sample, and finally 50 completed questionnaires were received. Field method and standard questionnaire tools were used to collect data. Face validity was used to evaluate the validity of the questionnaire and Cronbach's alpha coefficient was used to evaluate the reliability.The results of the analysis showed that 2 universities are in the nascent stage of maturity, 27 universities are in the early stage, 16 universities are in the established stage and 5 universities are in the mature stage and there is no university at the advanced level of the maturity model. No relationship was found between the number of university students and big data maturity in universities, and the average level of big data maturity is significantly different between Tehran and city universities.In this study, based on the results, recommendations were provided to each of the universities participating in the survey to promote big data maturity.

کلیدواژه‌ها English

big data
maturity model
big data maturity model
big data in university
[1]    Chae, B. K. (2019). A general framework for studying the evolution of the digital innovation ecosystem: The case of big data. International Journal of Information Management, 45, 83–94. https://doi.org/10.1016/j.ijinfomgt.2018.10.023.
[2]    Baig, M.I., Shuib, L. & Yadegaridehkordi, E. Big data in education: a state of the art, limitations, and future research directions. Int J Educ Technol High Educ 17, 44 (2020). https://doi.org/10.1186/s41239-020-00223-0
[3]    Ur Rehman, M. H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P. P., & Perera, C. (2019). The role of big data analytics in industrial internet of things. Future Generation Computer Systems, 92, 578–588. https://doi.org/10.1016/j.future.2019.04.020.
[4]    Halper, F. (2020). TDWI Analytics Maturity Model. TDWI Research.
[5]    Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., ... & Warschauer, M. (2020). Mining big data in education: Affordances and challenges. Review of Research in Education, 44(1), 130-160. https://doi.org/10.3102/0091732X20903304.
[6]    Al-Rahmi, W. M., Yahaya, N., Aldraiweesh, A. A., Alturki, U., Alamri, M. M., Saud, M. S. B., ... & Alhamed, O. A. (2019). Big data adoption and knowledge management sharing: An empirical investigation on their adoption and sustainability as a purpose of education. Ieee Access, 7, 47245-47258. https://doi.org/10.1109/ACCESS.2019.2906668
[7]    Yunita, A., Santoso, H. B., & Hasibuan, Z. A. (2021, June). Research review on big data usage for learning analytics and educational data mining: A way forward to develop an intelligent automation system. In Journal of Physics: Conference Series (Vol. 1898, No. 1, p. 012044). IOP Publishing. https://doi.org/10.1088/1742-6596/1898/1/012044
[8]    Peirong, G., & Jun, H. (2020). Experience and Enlightenment of Using Big Data for Scientific Research at Universities in Developed Countries. Frontiers in Educational Research, 3(1). https://doi.org/10.25236/FER.2020.030112 
[9]    Hamad, F., Fakhuri, H., & Abdel Jabbar, S. (2022). Big data opportunities and challenges for analytics strategies in Jordanian Academic Libraries. New Review of Academic Librarianship, 28(1), 37-60. https://doi.org/10.1080/13614533.2020.1764071
[10]    Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big data research, 2(2), 59-64. https://doi.org/10.1016/j.bdr.2015.01.006
[11]    Farah, B. (2017). A value based big data maturity model. Journal of Management Policy and Practice, 18(1), 11-18.‏
[12]    Al-Sai, Z. A., & Abdullah, R. (2019, April). A review on big data maturity models. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (pp. 156-161). IEEE.‏ https://doi.org/10.1109/JEEIT.2019.8717398
[13]    Comuzzi, M., & Patel, A. (2016). How organisations leverage big data: A maturity model. Industrial management & Data systems.‏ https://doi.org/10.1108/IMDS-12-2015-0495
[14]    Al-Sai, Z. A., Husin, M. H., Syed-Mohamad, S. M., Abdullah, R., Zitar, R. A., Abualigah, L., & Gandomi, A. H. (2023). Big data maturity assessment models: a systematic literature review. Big Data and Cognitive Computing, 7(1), 2. https://doi.org/10.3390/bdcc7010002
[15]    Retrialisca, F., & Chotijah, U. (2020). The Maturity Measurement of Big Data Adoption in Manufacturing Companies Using the TDWI Maturity Model. Journal of Information Systems Engineering and Business Intelligence, 6(1), 70-78.‏ http://dx.doi.org/10.20473/jisebi.6.1.70-78 
[16]    Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering.
[17]    Braun, H. T. (2015). Evaluation of Big Data maturity models–a benchmarking study to support Big Data maturity assessment in organizations (Master's thesis).‏
[18]    Alizadeh Moghadam, S., Kordnaeij, A., Khodadad hosseini, S., Mohamadian, A. (2024). Identification and conceptualization of strategic decision-making drivers of digital transformation in Iranian apparel retail organizations. Management Research in Iran, 27(4), 59-88. [in Persian]
[19]    Zarei, A., feiz, D., Taheri, G. (2021). Providing Social Market Intelligence Framework based on web 2.0 Using Text-Mining Technique on Social Media Websites (Case Study: Competitive Analysis between Samsung and Emersun Brands). Management Research in Iran, 24(4), 98-125.
[20]    Sulfeeza Mohd Drus & Noor Hafizah Hassan. (2017). Big data maturity model –A preliminary evaluation. Proceedings of the 6th International Conference on Computing & Informatics (pp 613-620). Sintok: School of Computing. 
[21]    Yazdani, H. R., Sohrabi, B., & jalilian, M. (2021). Identifying Qualitative Indicators For Evaluating IoT Business Models Based On Big Data Analysis In The Smart City. Modern Research in Decision Making, 6(2), 125-154. [in Persian]
[22]    Eslami Nosratabadi, H., Tarokh, M. J., & Poorebrahimi, A. (2021). Fuzzy expert system to evaluation of bank branch performance using datamining. Modern Research in Decision Making, 6(4), 236-261. [in Persian]
[23]    Okuyucu ،A. ،& Yavuz ،N. (2020). Big Data Maturity Models For The Public Sector: A Review Of State And Organizational Level Models. Transforming Government: People ، Process And Policy. https://doi.org/10.1108/TG-09-2019-0085 
[24]    Hausladen ،I. ،& Schosser ،M. (2020). Towards a maturity model for big data analytics in airline network planning. Journal of Air Transport Management. https://doi.org/10.1016/j.jairtraman.2019.101721
[25]    Spruit, M., & Pietzka, K. (2015). MD3M: The master data management maturity model. Computers in Human Behavior, 51, 1068-1076.‏ https://doi.org/10.1016/j.chb.2014.09.030
[26]    Garousi, V., & van Veenendaal, E. (2021). Test Maturity Model integration (TMMi): Trends of worldwide test maturity and certifications. IEEE Software.‏ Systems Applied Research, Baltimore, MD (Vol. 2167, p. 1508). https://doi.org/10.1109/MS.2021.3061930‏
[27]    MOUHIB, S., ANOUN, H., RIDOUANI, M., & HASSOUNI, L. (2020, October). Towards a global big data maturity model. In 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) (pp. 1-5). IEEE.‏ https://doi.org/10.1109/ICDS50568.2020.9268720
[28]    Pham, C. M. (2021). Building a maturity framework for big data cybersecurity analytics. Research Anthology on Privatizing and Securing Data, 365-385.‏ DOI: 10.4018/978-1-7998-8954-0.ch017