[1] Bayer, C. (2019). Recent Advancements in Sentiment Analysis in Finance. doi:10.18452/20866
[2] Nopp, C., & Hanbury, A. (2015). Detecting Risks in the Banking System by Sentiment Analysis. In L. Màrquez, C. Callison-Burch, & J. Su (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 591-600). Lisbon, Portugal: Association for Computational Linguistics. doi:10.18653/v1/D15-1071
[3] A. Hevner, & A. Maedche (Eds.), Design Science Research. Cases. Progress in IS. Springer, Cham. doi:10.1007/978-3-030-46781-4_4
[4] Gomes, T., & Khan, N. (2011). Strengthening Bank management of Liquidity Risk: The Basel III Liquidity Standards, Financial System Review, pp. 35-42, 2011
https://api.semanticscholar.org/CorpusID:14207670
[5] Tavana, M., Abtahi, A. R., Di Caprio, D., & Poortarigh, M. (2018). An Artificial Neural Network and Bayesian Network model for liquidity risk assessment in banking. Neurocomputing, 275, 2525-2554. doi:10.1016/j.neucom.2017.11.034
[6] Abensur, E., & de Carvalho, W. (2022). Improving Portfolio Selection by Balancing Liquidity-Risk-Return: Evidence from Stock Markets. Theoretical Economics Letters, 12, 479-497. doi:10.4236/tel.2022.122027
[7] Solangi, Y. A., Solangi, Z. A., Aarain, S., Abro, A., Mallah, G. A., & Shah, A. (2018). Review on Natural Language Processing (NLP) and Its Toolkits for Opinion Mining and Sentiment Analysis. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-4). doi:10.1109/ICETAS.2018.8629198
[8] Swankie, G., & Broby, D. (2019). Examining the Impact of Artificial Intelligence on the Evaluation of Banking Risk. Review of Financial Studies, 35(10), 4425-4473. doi:10.2139/ssrn.3112213
[9] Calabrese, R., & Giudici, P. (2015). Estimating bank default with generalised extreme value regression models. The Journal of the Operational Research Society, 66(11), 1783-1792. doi:10.1057/jors.2014.61
[10] Piccolo, A., & Shapiro, J. (2022). Credit Ratings and Market Information. Review of Financial Studies, 35(10), 4425-4473. doi:10.1093/rfs/hhab093
[11] Boguth, O., Carlson, M., Fisher, A., & Simutin, M. (2016). Horizon Effects in Average Returns: The Role of Slow Information Diffusion. Review of Financial Studies, 29(8), 2241-2281. doi:10.1093/rfs/hhw024
[12] Nam, K., & Seong, N. (2019). Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market. Decision Support Systems, 117, 100-112. doi:10.1016/j.dss.2018.11.004
[13] Guerra, P., Castelli, M., & Côrte-Real, N. (2022). Machine learning for liquidity risk modelling: A supervisory perspective. Economic Analysis and Policy, 74, 175-187. doi:10.1016/j.eap.2022.02.001
[14] Guerra, P., Castelli, M., & Côrte-Real, N. (2022). Machine learning for liquidity risk modeling: A supervisory perspective. Economic Analysis and Policy, 74, 175-187. doi:10.1016/j.eap.2022.02.001
[15] An, C.-H. (2017). A Study on Estimation of Financial Liquidity Risk Prediction Model Using Financial Analysis. International Journal of Applied Engineering Research, vol. 12, no. 20, pp. 9919-9923.
[16] Effiong, D. A., & Enya, E. F. (2020). Liquidity Risk Management and Financial Performance: Are Consumer Goods Companies Involved? International Journal of Recent Technology and Engineering (IJRTE). https://doi.org/10.35940/ijrte.A1692.059120
[17] Arias, J. A. E., Serna, M. A. A., Gómez, J. G. M., Kleine, C., & Arbelaez, L. C. F. (2015). Design of information system for the Liquidity Risk Management in financial institutions. Iberian Conference on Information Systems and Technologies. doi:10.1109/cisti.2015.7170360
[17] Montenegro, C., Murillo, M., Gallegos, F., & Albuja, J. (2016). DSR Approach to Assessment and Reduction of Information Security Risk in TELCO. IEEE Latin America Transactions, 14(5), 2402-2410. doi:10.1109/TLA.2016.7530438
[18] Montenegro, C., Murillo, M., Gallegos, F., & Albuja, J. (2016). DSR Approach to Assessment and Reduction of Information Security Risk in TELCO. IEEE Latin America Transactions, 14(5), 2402-2410. doi:10.1109/TLA.2016.7530438
[19] Cedergren, A., & Hassel, H. (2022). Using Action Design Research for Developing and Implementing a Method for Risk Assessment and Continuity Management. Safety Science, 151, 105727. doi:10.1016/j.ssci.2022.105727
[20] Drudi, M. L., & Nobili, S. (2021). A liquidity risk early warning indicator for Italian banks: a machine learning approach. Bank of Italy, Economic Research and International Relations Area, (1337). doi:10.2139/ssrn.3891566
[21] Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105. doi:10.2307/25148625
[22] Lanine, G., & Vander Vennet, R. (2006). Failure prediction in the Russian bank sector with logit and trait recognition models. Expert Systems with Applications, 30(3), 463-478. doi:10.1016/j.eswa.2005.10.014
[23] Feki, A., Ben Ishak, A., & Feki, S. (2012). Feature selection using Bayesian and multiclass Support Vector Machines approaches: Application to bank risk prediction. Expert Systems with Applications, 39(3), 3087-3099. doi:10.1016/j.eswa.2011.08.172
[24] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. doi:10.1038/nature14539
[25] Thakkar, A., & Chaudhari, K. (2021). A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions. Expert Systems with Applications, 177, 114800. doi:10.1016/j.eswa.2021.114800
[26] Ferreira, C., Jenkinson, N., & Wilson, C. (2019). From Basel I to Basel III: Sequencing Implementation in Developing Economies. IMF Working Papers, (127). doi:10.5089/9781498315227.001
[27] E. B. Authority. (2021). Guidelines on recovery plan indicators under Article 9 of Directive. European Banking Authority.
[28] Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. doi:10.2307/1914185
[29] Paraboni, A. L., Righi, M. B., Vieira, K. M., & Silveira, V. G. da. (2018). The relationship between sentiment and risk in financial markets. Brazilian Administration Review, 15(1), e170055. https://doi.org/10.1590/1807-7692bar2018170055.
[30] Lu, W., Li, G., Zhu, X., & Li, J. (2019). Discovering bank risk factors from financial statements based on a new semi-supervised text mining algorithm. Accounting & Finance, 59(3), 1519-1552. doi:10.1111/acfi.12453.
[31] Huang, J., Roberts, H., & Tan, E. (2018). The Impact of Media Sentiment on Firm Risk, Corporate Investment, and Financial Policies. SSRN Electronic Journal. doi:10.2139/ssrn.3099307
[32] Araci, D. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. Retrieved from arXiv:1908.10063
[33] Shao, C., & Chen, X. (2022). Deep-Learning-Based Financial Message Sentiment Classification in Business Management. Computational Intelligence and Neuroscience, 2022. doi:10.1155/2022/3888675
[34] Liu, N., & Zhao, J. (2022). A BERT-Based Aspect-Level Sentiment Analysis Algorithm for Cross-Domain Text. Computational Intelligence and Neuroscience, 2022, 8726621. doi:10.1155/2022/8726621