Document Type : Original Article

Authors

1 Faculty of Information Technology Engineering, Tarbiat Modares University, Tehran, Iran

2 Professor, Faculty of Information Technology Engineering, Tarbiat Modares University, Tehran, Iran

3 Faculty of Information Technology Engineering, Tarbiat Modares University, Tehran, Iran.

4 Faculty of Management, Imam Sadegh University (AS), Tehran, Iran.

Abstract

The Design Science Research method (DSR) is an approach to provide practical solutions based on scientific principles in order to produce substantiated and inferred results and products, and at the same time, the results can be scientifically evaluated in the form of primary artifacts and practical use in four main stages which ultimately results in their practical efficiency and effectiveness in the outside world. By designing and creating an archetype in the prototyping stage, DSR evaluates real scenarios and then examines the solution in practical cases. From this point of view, in this research, it has been tried to use the DSR method to provide an innovative solution for predicting bank liquidity risk and upcoming scenarios. This study uses semtiment analysis and deep learning algorithm such as deep convolutional network in predicting liquidity risk and presents a simple and effective method to identify dynamic qualitative variables from recent news about a domestic bank in the country. Predicted scenarios are available to banking experts in the real world to facilitate decision-making in risk measures. According to the guidelines of the Basel Committee and other European banking regulatory frameworks, comparing these scenarios with the scenarios occurring in the bank indicates a relatively high accuracy of the proposed method. In the scenarios derived from the Basel Committee and derived from the European Banking Authority, the forecasting accuracy is about 91% and 82%, respectively

Keywords

[1] Bayer, C. (2019). Recent Advancements in Sentiment Analysis in Finance.           doi:10.18452/20866
[2] Nopp, C., & Hanbury, A. (2015). Detecting Risks in the Banking System by Sentiment Analysis. In L. Màrquez, C. Callison-Burch, & J. Su (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 591-600). Lisbon, Portugal: Association for Computational Linguistics. doi:10.18653/v1/D15-1071
[3] A. Hevner, & A. Maedche (Eds.), Design Science Research. Cases. Progress in IS. Springer, Cham. doi:10.1007/978-3-030-46781-4_4
[4] Gomes, T., & Khan, N. (2011). Strengthening Bank management of Liquidity Risk: The Basel III Liquidity Standards, Financial System Review, pp. 35-42, 2011
https://api.semanticscholar.org/CorpusID:14207670
[5] Tavana, M., Abtahi, A. R., Di Caprio, D., & Poortarigh, M. (2018). An Artificial Neural Network and Bayesian Network model for liquidity risk assessment in banking. Neurocomputing, 275, 2525-2554. doi:10.1016/j.neucom.2017.11.034
[6] Abensur, E., & de Carvalho, W. (2022). Improving Portfolio Selection by Balancing Liquidity-Risk-Return: Evidence from Stock Markets. Theoretical Economics Letters, 12, 479-497. doi:10.4236/tel.2022.122027
[7] Solangi, Y. A., Solangi, Z. A., Aarain, S., Abro, A., Mallah, G. A., & Shah, A. (2018). Review on Natural Language Processing (NLP) and Its Toolkits for Opinion Mining and Sentiment Analysis. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-4). doi:10.1109/ICETAS.2018.8629198
[8] Swankie, G., & Broby, D. (2019). Examining the Impact of Artificial Intelligence on the Evaluation of Banking Risk. Review of Financial Studies, 35(10), 4425-4473. doi:10.2139/ssrn.3112213
[9] Calabrese, R., & Giudici, P. (2015). Estimating bank default with generalised extreme value regression models. The Journal of the Operational Research Society, 66(11), 1783-1792. doi:10.1057/jors.2014.61
[10] Piccolo, A., & Shapiro, J. (2022). Credit Ratings and Market Information. Review of Financial Studies, 35(10), 4425-4473. doi:10.1093/rfs/hhab093
[11] Boguth, O., Carlson, M., Fisher, A., & Simutin, M. (2016). Horizon Effects in Average Returns: The Role of Slow Information Diffusion. Review of Financial Studies, 29(8), 2241-2281. doi:10.1093/rfs/hhw024
[12] Nam, K., & Seong, N. (2019). Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market. Decision Support Systems, 117, 100-112. doi:10.1016/j.dss.2018.11.004
[13] Guerra, P., Castelli, M., & Côrte-Real, N. (2022). Machine learning for liquidity risk modelling: A supervisory perspective. Economic Analysis and Policy, 74, 175-187. doi:10.1016/j.eap.2022.02.001
[14] Guerra, P., Castelli, M., & Côrte-Real, N. (2022). Machine learning for liquidity risk modeling: A supervisory perspective. Economic Analysis and Policy, 74, 175-187. doi:10.1016/j.eap.2022.02.001
[15] An, C.-H. (2017). A Study on Estimation of Financial Liquidity Risk Prediction Model Using Financial Analysis. International Journal of Applied Engineering Research, vol. 12, no. 20, pp. 9919-9923.
[16] Effiong, D. A., & Enya, E. F. (2020). Liquidity Risk Management and Financial Performance: Are Consumer Goods Companies Involved? International Journal of Recent Technology and Engineering (IJRTE). https://doi.org/10.35940/ijrte.A1692.059120
[17] Arias, J. A. E., Serna, M. A. A., Gómez, J. G. M., Kleine, C., & Arbelaez, L. C. F. (2015). Design of information system for the Liquidity Risk Management in financial institutions. Iberian Conference on Information Systems and Technologies. doi:10.1109/cisti.2015.7170360
[17] Montenegro, C., Murillo, M., Gallegos, F., & Albuja, J. (2016). DSR Approach to Assessment and Reduction of Information Security Risk in TELCO. IEEE Latin America Transactions, 14(5), 2402-2410. doi:10.1109/TLA.2016.7530438
[18] Montenegro, C., Murillo, M., Gallegos, F., & Albuja, J. (2016). DSR Approach to Assessment and Reduction of Information Security Risk in TELCO. IEEE Latin America Transactions, 14(5), 2402-2410. doi:10.1109/TLA.2016.7530438
[19] Cedergren, A., & Hassel, H. (2022). Using Action Design Research for Developing and Implementing a Method for Risk Assessment and Continuity Management. Safety Science, 151, 105727. doi:10.1016/j.ssci.2022.105727
[20] Drudi, M. L., & Nobili, S. (2021). A liquidity risk early warning indicator for Italian banks: a machine learning approach. Bank of Italy, Economic Research and International Relations Area, (1337). doi:10.2139/ssrn.3891566
[21] Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105. doi:10.2307/25148625
[22] Lanine, G., & Vander Vennet, R. (2006). Failure prediction in the Russian bank sector with logit and trait recognition models. Expert Systems with Applications, 30(3), 463-478. doi:10.1016/j.eswa.2005.10.014
[23] Feki, A., Ben Ishak, A., & Feki, S. (2012). Feature selection using Bayesian and multiclass Support Vector Machines approaches: Application to bank risk prediction. Expert Systems with Applications, 39(3), 3087-3099. doi:10.1016/j.eswa.2011.08.172
[24] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. doi:10.1038/nature14539
[25] Thakkar, A., & Chaudhari, K. (2021). A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions. Expert Systems with Applications, 177, 114800. doi:10.1016/j.eswa.2021.114800
[26] Ferreira, C., Jenkinson, N., & Wilson, C. (2019). From Basel I to Basel III: Sequencing Implementation in Developing Economies. IMF Working Papers, (127). doi:10.5089/9781498315227.001
[27] E. B. Authority. (2021). Guidelines on recovery plan indicators under Article 9 of Directive. European Banking Authority.
[28] Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. doi:10.2307/1914185
[29] Paraboni, A. L., Righi, M. B., Vieira, K. M., & Silveira, V. G. da. (2018). The relationship between sentiment and risk in financial markets. Brazilian Administration Review, 15(1), e170055. https://doi.org/10.1590/1807-7692bar2018170055.
[30] Lu, W., Li, G., Zhu, X., & Li, J. (2019). Discovering bank risk factors from financial statements based on a new semi-supervised text mining algorithm. Accounting & Finance, 59(3), 1519-1552. doi:10.1111/acfi.12453.
[31] Huang, J., Roberts, H., & Tan, E. (2018). The Impact of Media Sentiment on Firm Risk, Corporate Investment, and Financial Policies. SSRN Electronic Journal. doi:10.2139/ssrn.3099307
[32] Araci, D. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. Retrieved from arXiv:1908.10063
[33] Shao, C., & Chen, X. (2022). Deep-Learning-Based Financial Message Sentiment Classification in Business Management. Computational Intelligence and Neuroscience, 2022. doi:10.1155/2022/3888675
[34] Liu, N., & Zhao, J. (2022). A BERT-Based Aspect-Level Sentiment Analysis Algorithm for Cross-Domain Text. Computational Intelligence and Neuroscience, 2022, 8726621. doi:10.1155/2022/8726621