نویسندگان

1 دانشجوی کارشناس‌ارشد، دانشکده مدیریت وحسابداری، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت وحسابداری، دانشگاه شهید بهشتی، تهران، ایران

3 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت وحسابداری، دانشگاه شهید بهشتی، تهران، ایران

چکیده

هدف این مقاله ارائه مدل بازیابی پایدار محصولات فرسوده با در نظر گرفتن هم‌زمان اثرات اقتصادی، اجتماعی ومحیط زیستی است. تعیین تعداد، محل کارخانه‌ها و جریان مواد بین این کارخانه‌ها در شبکه بازیابی مد نظر است. در فرایند بازیابی و مدیریت ضایعات، بیشینه‌سازی سود و منافع اجتماعی و کمینه‌سازی آلودگی در عملیات محصول فرسوده مورد توجه است؛ جهت تجزیه و تحلیل اطلاعات ابتدا از طریق تکنیک فرآیند تحلیل سلسله مراتبی فازی وزن شاخص‌های مناسب برای تعریف توابع اجتماعی تعیین شده است. سپس با استفاده از مفاهیم و اصول مدل‌سازی ریاضی به تعیین مجموعه‌ها، پارامترها، متغیرها، توابع هدف و محدودیت‌های مدل ریاضی مکان‌یابی سایت‌های بازیابی ضایعات خودرو پرداخته شده است. به دنبال آن مدل ریاضی ارائه شده به وسیله الگوریتم ژنتیک چندهدفه حل شده است. در این تحقیق دو الگوریتم NSGA-II ترکیبی پیشنهادی و NSGA-II ساده برای حل مدل استفاده و مقایسه شده و تعدادی مسأله آزمایشی به صورت تصادفی تولید و توسط دو الگوریتم حل شده است. همچنین یک نمونه موردی با استفاده از داده‌های واقعی شرکت سایپا توسط مدل حل شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Developing Sustainable Recovery Model Of End-Life Products (Case Study: End-Of Life Vehicle)

نویسندگان [English]

  • Nazanin Mohebbi 1
  • Abbas Rad 2
  • Alireza Motameni 3

چکیده [English]

The purpose of this study is to develope a sustainable recovery model  for used vehicle in which economic, environmental and social impacts are balanced. This study is result or purpose based and is applied and in terms of method is mathematical programming modeling – quantitative. In order to collecting required data, a questionnaire of paired comparison applied. As well as data modeling for research in case of research, for solving various problems of mathematical programming model by Hypothetical data documentation and experts ideas in Saipa company gathered. Fuzzy Analytic Hierarchy Process has been set appropriate criteria weight for defining social functions applied. Then, using concepts and principles of mathematical modeling has been paid to determine sets, parameters, variables, objective functions and limitations of the mathematical model for locating car waste recovery sites. Then mathematical modeling provided by multi-objective genetic algorithm solved. In this study proposed hybrid algorithm and simple NSGA-II for solving the model used and compared. Some of test problems randomly generated and solved by both algorithms. Also, case study problem is solved using proposed NSGA-II hybrid algorithm. The analysis of data for this study has been done using Excel and MATLAB. Results show that dismantling facility should be establish in Tehran, Semnan, Khorasan, Tabriz, Kashan, and processing facility should be set in Semnan, Khorasan and Tabriz. Solving the test problems show that the proposed NSGA-II hybrid algorithm in terms of solution quality is better simple NSGA-II algorithm and proposed NSGA-II hybrid algorithm is more time consuming to solve.

کلیدواژه‌ها [English]

  • Reverse Logistics
  • sustainable development
  • End-of-Life Products
  • Multi-Objective Genetic Algorithms
[1] Zahedi, H., Najafi, G. , ) 2007 (Expantion of Sustainable development, management researches in Iran. 10 (4), 43-76. [2] Rayat Pisha, H. , Ahmadi, K. , Abbasnejad )2016( applying the qualitative approach meta syntheses for provide a comprehensive model of assessment of the sustainability in supply chain, modern researches in decision making. 1(1),127-151. [3] Khodadad Hosseini, H., Shafiee Roodposhti, M., Khord Naeig, A., Mohammadian, M. (2014) Conceptualizing the Model for Realization of Sustainable Marketing in I.R. Iran's Automotive Industry. 18(1),25-53. [4] Chan, F.T.S., Chan, H.K., Jain, V. )2012(A framework of reverse logistics for the automobile industry. International Journal of Production Research. 50 (5), 1318–1331. [5] Sasikumar, P., Kannan, G., Haq, N. )2010( A multi-echelon reverse logistics network design for product recovery – a case of truck tire remanufacturing. International Journal of Advanced Manufacturing Technology. 49, 1223–1234. [6] Tuzkaya, G., Gulsun, B., Onsel, S. )2011(A methodology for the strategic design of reverse logistics networks and its application in the Turkish white goods industry. International Journal of Production Research. 49 (15), 4543–4571. [7] Lee, D.H., Dong, M. )2008( A heuristic approach to logistics network design for end of lease computer products recovery. Transportation Research Part E: Logistics and Transportation Review. 44, 455–474. [8] Demirel, N.O., Gokcen, H. )2008(A mixed integer programming model for remanufacturing in reverse logistics environment. International Journal of Advanced Manufacturing Technology. 39, 1197–1206. [9] Eur. J. Oper. Res. 103, 1–17. Gomes, M.I., Barbosa-Povoa, A.P., Novais, A.Q. )2011( Modelling a recovery network for WEEE: a case study in Portugal. Waste Manage. 31, 1645–1660. [10] Alumur, S.A., Nickel, S., Saldanha-da-Gama, F., Verter, V. )2012(Multi-period reverse logistics network design. European Journal of Operational Research. 220, 67–78 [11] Dat, L.Q., Linh, D.T.T., Chou, S.Y., Yu, V.F. )2012( Optimizing reverse logistics costs for recycling end-of-life electrical and electronic products, Expert Systems with Applications, 6380–6387. [12] Kannan, D., Diabat, A., Alrefaei, M., Govindan, K., Yong, G.) 2012(A carbon footprint based reverse logistics network design model. Resources, Conservation and Recycling. 67, 75–79. [13] Das, K., Chowdhury, A. )2012( Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning. International Journal of Production Economics, 135, 209–221. [14] Chen, K.C., Huang, S.H., Lian, I.W. )2010( The development and prospects of the endof- life vehicle recycling system in Taiwan. Waste Manage. 30, 1661–1669. [15] Min, H., Ko, H.J., Ko, C.S. )2006(A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns, Omega. 56–69. [16] Deb K, Pratap,A., Agarwal, S., Meyarivan T. (2002),A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary computations;6:182–97. [17] Dehghanian, F., Mansour S., (2009), Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, Conservation and Recycling, 53, 559-570.