نویسنده

استادیار، گروه مدیریت، دانشکده مدیریت و اقتصاد، دانشگاه پیام نور، تهران، ایران.

چکیده

هدف اصلی این پژوهش به کارگیری مهندسی عوامل انسانی در تئوری زمان‌بندی به منظور بهینه‌سازی عملکرد نیروی کار است. در این مقاله مسأله زمان‌بندی نیروی کار موقت با عملکرد متغیر مورد بررسی قرار گرفته شده است. تابع هدف مدل مورد بررسی کمینه‌سازی هزینه‌های نیروی کار است و مدل ریاضی ارائه شده بهترین طول زمانی شیفت کاری و تخصیص کارکنان را مشخص می‌کند. ویژگی منحصر به فرد این پژوهش در نظر گرفتن ابعاد ارگونومی (خستگی کارکنان) در زمان‌بندی کارکنان است. برای حل مدل ریاضی ارائه شده از الگوریتم ژنتیک استفاده شد. برای بررسی اثربخشی و کارایی مدل و الگوریتم ژنتیک مجموعه‌ای از مسائل حل شد. برای بررسی کارایی الگوریتم ژنتیک راه‌حل‌های به‌دست‌آمده با راه‌حل‌های نرم‌افزار لینگو مورد مقایسه قرار گرفت. مقایسه نتایج نشان داد که الگوریتم ژنتیک کارایی مطلوبی در یافتن پاسخ رضایت‌بخش در مدت زمان محاسباتی مناسب دارد. این پژوهش نشان داد که می‌توان خستگی کارکنان را در برنامه‌ریزی و زمان‌بندی کارکنان مدل‌سازی کرد و به منظور کاهش هزینه‌های کارکنان و افزایش کارایی تولید، شیفت‌های کاری انعطاف‌پذیر در نظر گرفت. پیشنهاد می‌شود که با استفاده از مدل ارائه شده به منظور بررسی سیاست‌های کاهش خستگی کارکنان و افزایش ظرفیت کاری آنان هزینه‌های این سیاست‌ها (چون آموزش، گردش شغلی، اتوماسیون و...) با میزان بهینگی اقتصادی ناشی از آن در زمان‌بندی، مقایسه و بهترین برنامه‌ها انتخاب گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Part-Time Workforces Scheduling with Variable Productivity

نویسنده [English]

  • mohammad akbari

چکیده [English]

This research aims to incorporate human factors engineering into the scheduling theory in order to exploit optimized human performance. Staff scheduling issue in which part-time employees have variable performance was studied in this paper. Objective function of the mathematical model is to minimize staffing costs and provided model tries to determine best shifts duration and employees assignments. The unique characteristic and novelty of this study is consideration of ergonomic aspect (fatigue rate of employees) in staff scheduling problem. We used genetic algorithm to solve model. In order to examine effectiveness and efficiency of the model, a set of problems were solved. Also efficiency of GA algorithm results were compared against LINGO results. Comparison of results demonstrated that GA algorithm has good ability to find satisfying solution in reasonable computational running time. This study showed that we can model human fatigue in employee scheduling and planning and consider flexible working shifts to decrease labor cost and increase production efficiency. In order to study policies of decreasing labor fatigue and increasing his/her working capacity, applying provided model were suggested for comparing cost of policies (such as education, job rotation, automation and …) against economic benefits of them in scheduling and choosing the best.

کلیدواژه‌ها [English]

  • Staff Scheduling
  • Worker Fatigue
  • Part-Time Employee
  • genetic algorithm
[1] Ernst, A.T., Jiang, H., Krishnamoorthy, M., and Sier, D., Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153 (2004), pp. 3–27.
[2] Glover, F., McMillan, C., The general employee scheduling problem: An integration of management science and artificial intelligence. Computers & Operations Research, 13 (1986), pp. 563–593.
[3] Thompson, G.M., Goodale, J.C., Variable employee productivity in workforce scheduling. European Journal of Operational Research, 170 (2006), pp. 376–390.
[4] Lodree, E.J., Geiger C.D., Jiang, X., Taxonomy for integrating scheduling theory and human factors: Review and research opportunities. International Journal of Industrial Ergonomics, 39 1 (2009), pp. 39–51.
[5] Guastello, S.J., Human factors engineering and ergonomics: a systems approach, Mahwah, NJ: Lawrence Erlbaum Associates, Publishers, (2006).
[6] Niebel, B.W., Motion and time study: an introduction to methods, time study, and wage payment, RICHARD D. IRWIN, INC, HOMEWOOD, ILLINOIS, (1958).
[7] Ku, C.H., Smith, M.J., Organizational factors and scheduling in locomotive engineers and conductors: Effects on fatigue, health and social well-being. Applied Ergonomics, 41 1 (2010), pp.62–71.
[8] ROSA, R.R., Extended work shifts and excessive fatigue. Journal of Sleep Research, 4 (1995), pp. 51-56.
[9] Eiselt, H.A., Marianov, V., Employee positioning and workload allocation. Computers & Operations Research, 35 (2008), pp. 513–524.
 [10] Akbari, M., Zandieh, M., Dorri, B., Scheduling part-time and mixed-skilled workers to maximize employee satisfaction. The International Journal of Advanced Manufacturing Technology, 64 5-8 (2013), pp. 1017-1027
[11] Florence, P.S., Economics of fatigue and unrest and the efficiency of labour in English and American industry, Cornell University, New York: H. Holt and Co., (2003)
[12] Guastello S.J., McGee, D.W., Mathematical modeling of fatigue in physically demanding jobs. Journal of Mathematical Psychology, 31 3 (1987), pp. 248 – 269.
[13] Baker, K.R., Workforce allocation in cyclic scheduling problems: A survey. Operational research quarterly, 27 1 (1976), pp. 155_167.
[14] Alfares, H.K., Survey, Categorization, and Comparison of Recent Tour Scheduling Literature. Annals of Operations Research, 127 1-4 (2004), pp. 145–175.
[15] Avramidis, A.N., Chan, W., Gendreau, M., L’Ecuyer, P., Pisacane, O., Optimizing daily agent scheduling in a multiskill call center, European Journal of Operational Research 200 (2010) 822–832.
[16] Bhulai, S., Koole, G., Pot, A., Simple methods for shift scheduling in Multiskill call centers, Manufacturing & Service Operations Management 10 (2008) 411–420.
[17] Topaloglu, S., Ozkarahan, I., An Implicit Goal Programming Model for the Tour Scheduling Problem Considering the Employee Work Preferences. Annals of Operations Research, 128 1-4 (2004), pp. 135–158.
[18] Moondra, S.L., An LP model for work force scheduling for banks. Journal of Bank Research, 7 4 (1976), pp. 299–301.
[19] Bechtold, S.E., Jacobs, L.W., Implicit modeling of flexible break assignments in optimal shift scheduling. Management Science, 36 11 (1990), pp. 1339–1351.
[20] Thompson, G.M., Improved Implicit Optimal Modeling of the Labor Shift Scheduling Problem. Management Science, 41 4 (1995), pp. 595-607.
[21] Jacobs, L.W., Brusco, M.J., Overlapping start-time bands in implicit tour scheduling. Management Science, 42 9 (1996), pp. 1247–1259.
[22] Brusco, M.J., Jacobs, L.W., Personnel tour scheduling when starting-time restriction are present. Management Science, 44 4 (1998), pp. 534–547.
[23] Stolletz, R., Operational workforce planning for check-in counters at airports. Transportation Research Part E – Logistics and Transportation Review 46 (2010), pp. 414–425.
[24] Stolletz, R., Brunner, J.O., Fair optimization of fortnightly physician schedules with flexible shifts. European Journal of Operational Research, 219 (2012), pp. 622–629
[25] Stolletz, R., Zamorano, E., A rolling planning horizon heuristic for scheduling agents with different qualifications. Transportation Research Part E, 68 (2014), pp. 39–52.
[26] Brunner, J.O., Bard, J.F., Flexible weekly tour scheduling for postal service workers using a branch and price. Journal of Scheduling, 16 (2013), pp. 129-149.
[27] Jarrah, A.I.Z., Bard, J.F., deSilva, A.H., Solving large-scale tour scheduling problems. Management Science, 40 9 (1994), pp. 1124–1144.
[28] Brusco, M.J., Solving personnel tour scheduling problems using the dual all-integer cutting plane. IIE Transactions, 30 9 (1998), pp. 835_844.
[29] Rekik, M., Cordeau, J.F., Soumis, F., Using Benders Decomposition to Implicitly Model Tour Scheduling. Annals of Operations Research, 128 1-4 (2004), pp.111–133.
[30] Zolfaghari, S., Vinh, Q., El-Bouri, A., Khashayardoust, M., Application of a genetic algorithm to staff scheduling in retail sector, International Journal of Industrial and Systems Engineering, 5 (2010) 20–47.
[31] Baker, K., Scheduling a Full-Time Workforce to Meet Cyclic Staffing Requirements. Management Science, 20 12 (1974), pp. 1561–1568.
[32] Vakharia, A.J., Selim H.S., Husted, R.R., Efficient scheduling of part-time employees. Omega, 20 2 (1992), pp. 201–213.
[33] Techawiboonwong, A., Yenradee, P., Das, S.K., A master scheduling model with skilled and unskilled temporary workers. International Journal of Production Economics, 103 2 (2006), pp. 798–809.
[34] Loucks, J.S., Jacobs, F.R., Tour Scheduling and Task Assignment of a Heterogeneous Work Force: A Heuristic Approach.  Decision Sciences, 22 4 (2007), pp. 719 – 738.
[35] Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L., Personnel scheduling: A literature review. European Journal of Operational Research, 22 6 (2013), pp. 367–385.
[36] Easton, F.F., Rossin, D.F., Sufficient working subsets for the tour scheduling problem. Management Science, 37 11 (1991), pp. 1441-1451.
[37] Li, C., Robinson, E.P., Mabert, V.A., An Evaluation of Tour Scheduling Heuristics with Differences in Employee Productivity and Cost. Decision Sciences, 22 4 (1991), pp. 700–718.
[38] Brusco, M.J., Johns, T.R., Staffing a Multi-skilled Workforce with Varying Levels of Productivity: An Analysis of Cross-training Policies. Decision Sciences, 29 2 (1998), pp. 499–515.