نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت بازاریابی ، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه مدیریت بازرگانی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

هدف از این مقاله، شناسایی عوامل مؤثر بر تجربه مشتری در خرید آنلاین از طریق موبایل اپلیکیشن‌های فروشگاهی و مدل‌سازی ارتباطات درونی آن‌ها است. در این راستا ابتدا بر مبنای شاخص‌های شناسایی‌شده در مدل نظری تجربه مشتری در موبایل اپلیکیشن‌های فروشگاهی تلاش شد تا با بهره‌گیری از روش دلفی با مشارکت خبرگان، غربالگری و نهایی سازی شاخص‌های شناسایی‌شده صورت پذیرد. بهره‌گیری از روش دلفی در سه مرحله منجر به حذف 21 شاخص گردید. در ادامه با استفاده از روش مدل‌سازی ساختاری تفسیری ، مدل استخراجی ارزیابی و عوامل سطح‌بندی شدند. درنهایت با بهره‌گیری از تحلیل میک مک قدرت نفوذ و میزان وابستگی عوامل تحلیل گردید. بر اساس خروجی این پژوهش، تأثیرگذارترین شاخص در ایجاد تجربه مشتری در خرید از طریق موبایل اپلیکیشن‌های فروشگاهی، قابلیت‌های دستگاه تلفن همراه است. این شاخص که خود را در سایز صفحه گوشی، نوع سیستم‌عامل تلفن همراه و بهره‌گیری از قابلیت‌هایی همچون سیستم موقعیت جغرافیایی منعکس می‌کند در شرایطی بیشترین تأثیر را بر تجربه خرید آنلاین می‌گذارد که تصمیم‌گیری در خصوص آن خارج از کنترل طراحان موبایل اپلیکیشن‌ها و مالکین خرده‌فروشی‌ها است. همچنین مشخص شد که ابعاد اصلی مؤثر بر تجربه مشتری در 6 سطح تعریف می‌شوند که بر یکدیگر اثرگذارند. این پژوهش توانست درباره عوامل مؤثر بر تجربه مشتری در صنعت خرده‌فروشی و علی‌الخصوص فروش در بستر موبایل اپلیکیشن‌های فروشگاهی، دید جامع‌تری ایجاد کند.

کلیدواژه‌ها

عنوان مقاله [English]

Factors Influencing Online Buying Experience Through Retail Mobile Applications using Interpretive Structural Modelling

نویسندگان [English]

  • Parisa Ghandvar 1
  • Naser Azad 2
  • Abdollah Naami 2
  • Fataneh Alizadeh Meshkani 2

1 Ph.D. Student in Marketing Management, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Assistant Prof, Department of Business Management, South Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

This study aims to identify the factors Influencing the online buying experience through retail mobile applications and modeling their internal communications. In this regard, an attempt was made to screen and finalize the detected indications using the Delphi method with the assistance of experts, based on the indicators identified in the theoretical model of customer experience in retail mobile applications (CERM). The Delphi approach was used in three stages to eliminate 21 indications. The extraction model was then examined and the components were graded using interpretive structural modeling. Finally, the power of influence and degree of dependence of the components were examined using Mic Mac analysis. The capabilities of the mobile device, according to the findings of this study, are the most effective aspect in establishing a customer experience in retail mobile applications. In circumstances where decision-making is beyond the control of mobile app designers and retailers, this indicator, which is represented in the screen size of the phone, the type of mobile operating system, and the use of capabilities such as GPS, has the largest impact on the online buying experience. The key dimensions determining the customer experience were also discovered to be divided into six tiers, each of which has an impact on the others. This research was able to provide a more in-depth look at the aspects that influence customer experience in the retail business, particularly sales via retail mobile applications.

کلیدواژه‌ها [English]

  • Customer experience
  • Interpretive Structural Modeling
  • Retail mobile application
[1] Shankar, V., Kalyanam, K., Setia, P., Golmohammadi, A., Tirunillai, S., Douglass, T & Waddoups, R. (2021). How technology is changing retail. Journal of Retailing, 97(1), 13-27.
[2] Rajamannar, Raja. (2021). Quantum Marketing: Mastering the New Marketing Mindset for Tomorrow's Consumers. HarperCollins Leadership.
[3] Barnes, S. J. (2020). Information management research and practice in the post-COVID-19.
[4] Manthiou, A. (2020). Applying the EEE customer mindset in luxury: reevaluating customer experience research and practice during and after corona. Journal of Service Management.
[5] Pantelimon, F. V., Georgescu, T. M., & Posedaru, B. Ş. (2020). The impact of mobile e-commerce on gdp: A comparative analysis between romania and germany and how covid-19 influences the e-commerce activity worldwide. Informatica Economica, 24(2), 27-41.
[6] Chen, Y. M., Hsu, T. H., & Lu, Y. J. (2018). Impact of flow on mobile shopping intention. Journal of Retailing and Consumer Services, 41, 281-287.
[7] Cenamor, J. (2021). Complementor competitive advantage: A framework for strategic decisions. Journal of Business Research, 122, 335-343.
[8] Homburg, C., Jozić, D., & Kuehnl, C. (2017). Customer experience management: toward implementing an evolving marketing concept. Journal of the Academy of Marketing Science, 45(3), 377-401.
[9] Batat, W. (2019). Experimental Marketing: Consumer Behavior, customer Experience and the 7Es. Routledge.
[10] Rossman, J. R., & Duerden, M. D. (2019). Designing experiences. Columbia University Press.
[11] Jain, R., Aagja, J., & Bagdare, S. (2017). Customer experience–a review and research agenda. Journal of Service Theory and Practice, 27(3), 642-662.
[12] Kranzbühler, A. M., Kleijnen, M. H., Morgan, R. E., & Teerling, M. (2018). The multilevel nature of customer experience research: an integrative review and research agenda. International Journal of Management Reviews, 20(2), 433-456. 
[13] Patel, V., Das, K., Chatterjee, R., & Shukla, Y. (2020). Does the interface quality of mobile shopping apps affect purchase intention? An empirical study. Australasian Marketing Journal (AMJ), 28(4), 300- 309.
[14] Kranzbühler, A. M., Kleijnen, M. H., Morgan, R. E., & Teerling, M. (2018). The multilevel nature of customer experience research: an integrative review and research agenda. International Journal of Management Reviews, 20(2), 433-456. 
[15] Shafiee, R., Heidarzadeh Hanzaee, R., Ghorbanizadeh, V., & Gaffari, F. (2021). Phenomenological Exploration Presence of Low Customer Density Effects in Retailing on Customer Experience in Shopping Centers/Malls. Management Research in Iran, 25(3), 77-113. (In Persion)
[16] Patel, V., Das, K., Chatterjee, R., & Shukla, Y. (2020). Does the interface quality of mobile shopping apps affect purchase intention? An empirical study. Australasian Marketing Journal (AMJ), 28(4), 300- 309
[17] JOWKAR, A., Safarzadeh, H., Parhizgar, M. M., & Noroozi, A. (2014). Designing of M-Commerce Development Model in Iran: The Delphi Method. MANAGEMENT RESEARCH IN IRAN (MODARES HUMAN SCIENCES), 17(4), 97-118. (In Persion)
[18] Ghobakhloo, M., Rajabzadeh Ghatari, A., Toloie Eshlaghy, A., & Alborzi, M. (2020). Provide an Opinion Analysis-Based Recommender System for Personalized Personal Banking Services. Modern Research in Decision Making, 5(1), 25-49. (In Persion)
[19] Noori, R., & Kamangar, A. (2017). Providing a Conceptual Framework for Electronic Commerce Websites Based on the Neuro Website Design Theory. Modern Research inDecision Making, 2(2), 241-261. (In Persion)
[20] Logan, K. (2017). Attitudes towards in-app advertising: a uses and gratifications perspective. International Journal of Mobile Communications, 15(1), 26-48.
[21] Garg, R., & Telang, R. (2013). Inferring app demand from publicly available data. MISquarterly, 1253-1264. 
[22] Hsiao, K.-L., Chen, C.-C., 2016. What drives in-app purchase intention for mobile games? An examination of perceived values and loyalty. Electron. Commer. Res. Appl. 16, 18–29. 
[23] Fang, J., Zhao, Z., Wen, C., & Wang, R. (2017). Design and performance attributes driving mobile travel application engagement. International Journal of Information Management, 37(4), 269-283.
[24] Poulsson, S. H., & Kale, S. H. (2004). The experience economy and commercial experiences. The marketing review, 4(3), 267-277.
[25]  Marriott, H., Williams, M., Dwivedi, Y., 2017. What do we know about consumer m shopping behaviour? Int. J. Retail Distrib. Manage. 45 (6), 568–586
[26] Mindsea. (2019). 25 mobile app usage statistics to know in 2019. Retrieved from Mindsea: https://mindsea.com/app-stats / Pantano, E., & Priporas, C. V. (2016). The effect of mobile retailing on consumers' purchasing experiences: A dynamic perspective. Computers in human behavior, 61, 548-555.
[27] McLean, G., Osei-Frimpong, K., Al-Nabhani, K., & Marriott, H. (2020). Examining consumer attitudes towards retailers'm-commerce mobile applications–An initial adoption vs. continuous use perspective. Journal of Business Research, 106, 139-157.
[28]https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/
[29] Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research designs: Selection and implementation. The counseling psychologist, 35(2), 236-245.
[30] Ghandvar, P., Azad, N., Abdollah, N., & Alizadeh Meshkani, F. (2022). Designing Theoretical Model of Customer Experience in Retail Mobile Applications with an Emphasis on Flow Theory. Consumer Behavior Studies Journal, 6-6. . (In Persion)
[31] Mohamadi, B. (2014). Basic of qualitative research grounded theory. Tehran: Institute of Humanities and Cultural Studies. (in Persian)