نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

4 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

از آنجا که منابع در هر منطقه جغرافیایی محدود است، رویکرد منطقی آن است که این منابع صرف کسب و کارهای کارا شود. طی سال های اخیر، کلان شهر تهران به دلیل شرایط جوی و موقعیت جغرافیایی در شرایط بحرانی زیست محیطی قرار دارد؛ بنابراین، سنجش کارایی زیست محیطی صنایع فعال در این شهر در کنار ارزیابی کارایی عملیاتی حائز اهمیت است. برای مقایسه عملکرد صنایع و سنجش کارایی کل متشکل از کارایی عملیاتی و کارایی زیست محیطی می توان از تکنیک تحلیل پوششی داده ای شبکه ای استفاده نمود. پیدایش تکنیک تحلیل پوششی داده ای شبکه ای برای سنجش همزمان کارایی چندین زیرفرآیند به عنوان پیشرفتی در مدل استاندارد تحلیل پوششی داده ها به حساب می آید که در پی یافتن همزمان کارایی کل و کارایی زیرفرآیندها طی یک مدل ریاضی چندهدفه است. مدل ارائه شده در این پژوهش با حداقل سازی فاصله از کارایی مستقل، سعی در بهینه سازی مدل چندهدفه با استفاده از رویکردی خطی دارد. بطوری که مقایسه نتایج عددی نشانگر برتری این مدل نسبت به مدل های موجود در ادبیات در دستیابی به مجموعه جواب پارتو است.

کلیدواژه‌ها

عنوان مقاله [English]

Developing a network Data Envelopment Analysis approach to compare the environmental efficiency of active industries in Tehran

نویسندگان [English]

  • azadeh omid 1
  • Adel Azar 2
  • Mahmoud Dehghan Nayeri 3
  • Abbas Moghbel 4

1 PhD Student, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

2 Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

3 Assistant Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

4 Associate Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

چکیده [English]

Since the resources are limited in each industrial region, it is logical to allocate resources to the most efficient industries. Recently, based on the environmental conditions and geographical position of Tehran, the capital of Iran, this city is in critical environmental situation. Therefore, assessing both environmental and industrial efficiency of Tehran’s production industries is essential. In this regard, network Data Envelopment Analysis is used in order to compare total efficiency of the industries including environmental and operational efficiencies. Network Data Envelopment Analysis is a developed form of standard DEA and looks inside the black-box in order to assess the partial efficiency in addition to the total efficiency which will results to a multi-objective problem. The contribution of this research is introducing a technique for assessing the efficiency of a network structure by means of the developed form of network DEA technique which minimizes the distance from the individuals’ independent efficiency with a linear optimization approach. Results show the advantages of the proposed model.

کلیدواژه‌ها [English]

  • Network Data Envelopment Analysis
  • Environmental efficiency
  • Multi-objective optimization
  • Tehran’s production industries
                Charnes, A., W.W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units. European journal of operational research, 1978. 2(6): p. 429-444.
[2]                          Ahmadi, P., Robust Fuzzy Performance based budgeting model an approach to managing the budget allocation risk-Case Study: Tarbiat Modares University. Management Research in Iran, 2014. 17(4): p. 65-95.
[3]                          Afsharian, M., H. Ahn, and S.G. Harms, A Review of Approaches Applying a Common Set of Weights: The Perspective of Centralized Management. European Journal of Operational Research, 2021.
[4]                          Azizi, H., Efficiency assessment in data envelopment analysis using efficient and inefficient frontiers. Management Research in Iran, 2012. 16(3): p. 153-173.
[5]                          Banker, R.D., A. Charnes, and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 1984. 30(9): p. 1078-1092.
[6]                          Fasihi, B., H. Azizi, and Z. Gholizadeh Gazvar, Data envelopment analysis with missing data. Modern Research in Decision Making, 2021. 6(1): p. 201-229.
[7]                          Cook, W.D., L. Liang, and J. Zhu, Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 2010. 38(6): p. 423-430.
[8]          8.            Mousavi, S.R. and S.E. Najafi, Evaluation of EFQM model Projects Using the Two-Stage Model of Data Envelopment Analysis-the Game Theory Approach (Case study: 39 hospitals). Modern Research in Decision Making, 2019. 4(1): p. 167-195.
[9]                          Mahdiloo, M., et al., Integrated data envelopment analysis: Linear vs. nonlinear model. European Journal of Operational Research, 2018. 268(1): p. 255-267.
[10]                       Peykani, P., et al., Data envelopment analysis and robust optimization: A review. Expert Systems, 2020. 37(4): p. e12534.
[11]                       Sotiros, D., G. Koronakos, and D.K. Despotis, Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes. Omega, 2019. 85: p. 144-155.
[12]                       Kao, C., Network data envelopment analysis: A review. European journal of operational research, 2014. 239(1): p. 1-16.
[13]                       Liang, L., W.D. Cook, and J. Zhu, DEA models for two‐stage processes: Game approach and efficiency decomposition. Naval Research Logistics (NRL), 2008. 55(7): p. 643-653.
[14]                       Chen, Y., et al., Additive efficiency decomposition in two-stage DEA. European journal of operational research, 2009. 196(3): p. 1170-1176.
[15]                       Guo, C., et al., Decomposition weights and overall efficiency in two-stage additive network DEA. European Journal of Operational Research, 2017. 257(3): p. 896-906.
[16]                       Cook, W.D., et al., Network DEA: Additive efficiency decomposition. European journal of operational research, 2010. 207(2): p. 1122-1129.
[17]                       Ang, S. and C.-M. Chen, Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega, 2016. 58: p. 139-153.
[18]                       Kao, C. and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European journal of operational research, 2008. 185(1): p. 418-429.
[19]                       Kao, C. and S.-N. Hwang, Decomposition of technical and scale efficiencies in two-stage production systems. European Journal of Operational Research, 2011. 211(3): p. 515-519.
[20]                       Yin, P., et al., A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective. Omega, 2020. 93: p. 102035.
[21]                       Koronakos, G., A taxonomy and review of the network data envelopment analysis literature. Machine Learning Paradigms, 2019: p. 255-311.
[22]                       Despotis, D.K., G. Koronakos, and D. Sotiros, The “weak-link” approach to network DEA for two-stage processes. European Journal of Operational Research, 2016. 254(2): p. 481-492.
[23]                       Charnes, A. and W.W. Cooper, Programming with linear fractional functionals. Naval Research logistics quarterly, 1962. 9(3‐4): p. 181-186.
[24]                       Hwang, S.-N. and T.-L. Kao, Using two-stage DEA to measure managerial efficiency change of non-life insurance companies in Taiwan. International Journal of Management and Decision Making, 2008. 9(4): p. 377-401.
[25]                       Despotis, D.K., G. Koronakos, and D. Sotiros, Composition versus decomposition in two-stage network DEA: a reverse approach. Journal of Productivity Analysis, 2016. 45(1): p. 71-87.
[26]                       Deb, K., Multi-objective optimization, in Search methodologies2014, Springer. p. 403-449.
[27]                       Marler, R.T. and J.S. Arora, Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 2004. 26(6): p. 369-395.
[28]                       Kao, C., Efficiency decomposition for general multi-stage systems in data envelopment analysis. European Journal of Operational Research, 2014. 232(1): p. 117-124.