تحلیل نقش و جایگاه ذی‌نفعان اکوسیستم هوش‌مصنوعی در صنعت خودروسازی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت بازرگانی (مدیریت راهبردی)، دانشکده اقتصاد و مدیریت، دانشگاه تربیت مدرس، تهران، ایران.

2 استاد، گروه مدیریت، دانشکده مدیریت، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، گروه مدیریت بازرگانی، دانشکده اقتصاد و مدیریت، دانشگاه تربیت مدرس، تهران، ایران.

4 استاد، گروه علوم تصمیم و سیستم‌های پیچیده، دانشکده معارف اسلامی و مدیریت، دانشگاه امام صادق علیه السلام، تهران، ایران.

چکیده
صنعت خودروسازی، به‌عنوان خط مقدم انقلاب فناورانه، با ادغام فناوری هوش مصنوعی (AI) در حال تحول عمیقی است. هوش مصنوعی و کاربست آن در این صنعت تبدیل به یک اکوسیستم فناوری پیچیده‌ای شده است که ذی‌نفعان زیادی را در برمی‌گیرد. هدف این پژوهش شناسایی و تحلیل جایگاه و نقش ذی‌نفعان اکوسیستم هوش مصنوعی در صنعت خودروسازی در ایران است. بدین منظور، فهرستی از ذی‌نفعان اکوسیستم هوش مصنوعی در گام اول تهیه شد. در گام بعدی، جایگاه و نقش ذی‌نفعان تحلیل گردید. برای جمع‌آوری داده‌ها درمورد جایگاه ذی‌نفعان از ماتریس علاقه - قدرت استفاده شد که در طی آن پرسش‌نامه‌ای با 48 گویه طراحی و توسط ۳۶ متخصص و کارشناس تکمیل گردید. بر اساس یافته‌ها، ذی‌نفعان این اکوسیستم در دو سطح کلان و خرد دسته‌بندی و با استفاده از ماتریس علاقه - قدرت در چهار گروه طبقه‌بندی شده‌اند: ذی‌نفعان کلیدی (باعلاقه و قدرت بالا)، ذی‌نفعان زمینه‌ساز (باقدرت بالا و علاقه کم)، ذی‌نفعان تابع ( با قدرت کم و علاقه بالا) و ذی‌نفعان عوام ( باقدرت و علاقه پایین). نتایج نشان می‌دهد که نهادهای دولتی، مراکز تحقیقاتی، و خودروسازان در زمره ذی‌نفعان کلیدی قرار دارند، درحالی‌که نهادهای مالی و برخی تأمین‌کنندگان در گروه زمینه‌سازها جای می‌گیرند. کاربران نهایی، از جمله مصرف‌کنندگان و رانندگان، به‌عنوان ذی‌نفعان تابع محسوب می‌شوند، درحالی‌که رسانه‌ها و برخی سازمان‌های نظارتی در دسته عوام قرار دارند. این طبقه‌بندی می‌تواند به سیاست‌گذاران و صنعتگران در بهینه‌سازی تعاملات و توسعه پایدار اکوسیستم هوش مصنوعی در صنعت خودروسازی کمک کند.

کلیدواژه‌ها


عنوان مقاله English

Analysis of the Role and Position of Stakeholders in the Artificial Intelligence Ecosystem in Iran's Automotive Industry

نویسندگان English

Majid Darvish 1
Sayed Hamid Khodadad Hosseini 2
Freshteh Mansouri Moayyed 3
Gholamreza Goudarzi 4
1 PhD student, Department of Business Administration (Strategic Management), Faculty of Economics and Management, Tarbiat Modares University, Tehran, Iran.
2 Professor, Faculty of Management & Economics, Tarbiat Modares University, Tehran, Iran
3 , Department of Business Management, Faculty of Economics and Management, Tarbiat Modares University, Tehran, Iran
4 Professor, Department of Decision Sciences and Complex Systems, Faculty of Islamic Studies and Management, Imam Sadiq University, Tehran, Iran.
چکیده English

The automotive industry, as the forefront of the technological revolution, is undergoing a profound transformation with the integration of artificial intelligence (AI) technology. AI and its application in this industry have evolved into a complex technological ecosystem that encompasses numerous stakeholders. The objective of this research is to identify and analyze the position and role of stakeholders within the AI ecosystem in Iran's automotive industry. To this end, a list of stakeholders in the AI ecosystem was initially compiled. Subsequently, the position and role of these stakeholders were analyzed. Data regarding the stakeholders' positions were collected using an interest-power matrix, for which a questionnaire comprising 48 items was designed and completed by 36 experts and specialists. Based on the findings, the stakeholders in this ecosystem were categorized at both macro and micro levels and classified into four groups using the interest-power matrix: key stakeholders (with high interest and high power), contextual stakeholders (with high power and low interest), dependent stakeholders (with low power and high interest), and marginal stakeholders (with low power and low interest). The results indicate that governmental institutions, research centers, and automakers are among the key stakeholders, while financial institutions and some suppliers fall into the contextual stakeholder group. End-users, including consumers and drivers, are considered dependent stakeholders, whereas media and some regulatory organizations are categorized as marginal stakeholders. This classification can assist policymakers and industry players in optimizing interactions and fostering the sustainable development of the AI ecosystem in the automotive industry.

کلیدواژه‌ها English

Artificial intelligence
technology ecosystem
stakeholders
automotive industry
interest-power matrix
[1] Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R. N., & Basheer, S. (2022). Autonomous Vehicles and Intelligent Automation: Applications, Challenges, and Opportunities. MOBILE INFORMATION SYSTEMS, 2022, 7632892. https://doi.org/10.1155/2022/7632892
[2] Zoting, Shivani , and Aditi Shivarkar. “Generative AI in Automotive Market Size, Trends, Report 2032.” www.precedenceresearch.com, Aug. 2024, www.precedenceresearch.com/generative-ai-in-automotive-market. Accessed 14 Nov. 2024.
[3]  Jain & P. Kulkarni. (2022). Application of AI, IOT and ML for Business Transformation of The Automotive Sector. 2022 International Conference on Decision Aid Sciences and Applications (DASA), 1270–1275. https://doi.org/10.1109/DASA54658.2022.9765294
[4] Panetti, E., Parmentola, A., Ferretti, M., & Reynolds, E. B. (2020). Exploring the relational dimension in a smart innovation ecosystem: A comprehensive framework to define the network structure and the network portfolio. The Journal of Technology Transfer, 45(6), 1775–1796. https://doi.org/10.1007/s10961-019-09735-y
[5] Park, S. (2017). Understanding Digital Capital Within a User’s Digital Technology Ecosystem. In S. Park, Digital Capital (pp. 63–82). Palgrave Macmillan UK. https://doi.org/10.1057/978-1-137-59332-0_4
[6] Kenaani, F., Rasoulian, P., Hafezi, R., & Ahangari, S. S. (2023). Analysis of Iran's artificial intelligence ecosystem and identification of institutional and functional gaps. Science and Technology Policy , 16(2), 59-77. doi: 10.22034/jstp.2023.11303.1648 [In Persian]
[7] Jacobides, M. G., Brusoni, S., & Candelon, F. (2021). The evolutionary dynamics of the artificial intelligence ecosystem. Strategy Science, 6(4), 412-435.
[8] Laskin, A. V., & D’Agostino, G. (2024). The Delphi Panel investigation of artificial intelligence in investor relations. Public Relations Review, 50(4), 102489.
[9] Safdariranjbar, M., Aliniqian, A., & Ghaderi, F. (2023). Investigating policies for developing innovation ecosystems in the field of artificial intelligence; Evidence from Iran. Quarterly Journal of Innovation Economy Ecosystem Studies , 3(3), 99-120. [In Persian]
[10] Fazeli, A. (2016). Identification and evaluation of factors affecting innovation management in the automotive industry (Case study: Iran Khodro Company). International Conference on Elite Management . https://sid.ir/paper/864706/fa [In Persian]
[11] Taghva, M. R., Taghavi Fard, M. T., Naghizadeh, M., & Nouri, E. (2020). Identification and ranking of banking stakeholders in IT service management. Information Management , 2, 201-225. [In Persian]
[12] Krimelo, R., & Zakery, A. (2020). Analysis of interactions among key stakeholders in a regional innovation system (Case study: Rab-e Rashidi Science and Technology Special Zone). Management Improvement , 50, 85-114. [In Persian]
[13] Yrjölä, S., Matinmikko-Blue, M., & Ahokangas, P. (2023). Developing 6G Visions with Stakeholder Analysis of 6G Ecosystem. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 705–710. https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188379
[14] Sitar, A. S., Dimovski, V., & Ljubi, K. (2023). Investigating Challenges to Industry 4.0 Technology Transition in Automotive and Mobility Industries from Multi-stakeholder Perspective. 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), 1–4. https://doi.org/10.1109/ETFA54631.2023.10275634
[15] Cho, M., & Kim, Y.-L. (2023). Do inter-firm networks sustain the resilience of regional industrial ecosystems? A network-based analysis of the South Korean automotive industry. Regional Studies, Regional Science, 10(1), 569–580. https://doi.org/10.1080/21681376.2023.2205919
[16] Murpi, S., & Novani, S. (2024). Development of Low Carbon Cement Ecosystem in Indonesia Using Combine Stakeholder Analysis and Social Network Analysis: In a Perspective of Cement Company. International Journal of Current Science Research and Review. https://www.semanticscholar.org/paper/77ba028450fcf37aa7c388d11ad57e818990b9f4
[17] Sumon Gazi. (2024). Implications of Generative Al and Machine Learning on Automotive Industry Development & Reduction of Carbon Footprint: An Analysis of the U.S. Economy Perspective. Journal of Business and Management Studies, 6(3), 134–143. https://doi.org/10.32996/jbms.2024.6.3.15
[18] Tuomi, I. (2018). The impact of artificial intelligence on learning, teaching, and education.
[19]  Ćormarković Vargas, C., Whelan, J., Brimblecombe, J., Brock, J., Christian, M., & Allender, S. (2022). Co‐creation of healthier food retail environments: A systematic review to explore the type of stakeholders and their motivations and stage of engagement. Obesity Reviews, 23(9), e13482.
[20] Velarde, G. (2020). Artificial intelligence and its impact on the Fourth Industrial Revolution: A review. arXiv preprint arXiv:2011.03044.
[21]  Paolillo, A., Colella, F., Nosengo, N., Schiano, F., Stewart, W., Zambrano, D., ... & Floreano, D. (2022). How to compete with robots by assessing job automation risks and resilient alternatives. Science Robotics, 7(65), eabg5561.
[22]  Di Battista, A., Grayling, S., Hasselaar, E., Leopold, T., Li, R., Rayner, M., & Zahidi, S. (2023, May). Future of jobs report 2023. In World Economic Forum, Geneva, Switzerland. https://www. weforum. org/reports/the-future-of-jobs-report-2023.
[23] Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., LaFountain, B., 2020. In: M. S. M. R. a. B. C. Group (Ed.), Expanding AI’s Impact with Organizational Learning. MIT Sloan Management Review and Boston Consulting Group.
[24] Sahi, S. M. (2022). The artificial intelligence and its global economic growth impact. World Economics and Finance Bulletin, 9, 16-24.
[25] Gusai, O. P., & Rani, A. (2024). Role of Artificial Intelligence in Making a Positive Impact on Sustainable Development. In Applications of Artificial Intelligence in Business and Finance 5.0 (pp. 69-81). Apple Academic Press.
[26]  Adner, R., & Kapoor, R. (2010). Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance in new technology generations. Strategic management journal, 31(3), 306-333.
[27] Barile, S., Grimaldi, M., Loia, F., & Sirianni, C. A. (2020). Technology, Value Co-Creation and Innovation in Service Ecosystems: Toward Sustainable Co-Innovation. Sustainability, 12(7), 2759. https://doi.org/10.3390/su12072759
[28] Romanelli, M. (n.d.). Towards Sustainable Peace by Technology. In Advances in Public Policy and Administration (pp. 85–108). IGI Global. https://doi.org/10.4018/978-1-5225-7464-4.ch005
[29] Khattra, S. K., Balaut, A., & Dogra, R. (2024). Advancing Sustainable Ecosystem Development. Journal of Geography, Environment and Earth Science International, 28(7), 52–59. https://doi.org/10.9734/jgeesi/2024/v28i7789
[30] Zarubina, Y. (2021). Innovative Ecosystems And Cluster Formation Models. Scientific Papers Collection of the Angarsk State Technical University, 2021(1), 280–283. https://doi.org/10.36629/2686-7788-2021-1-1-280-283
[31] Bonilla Jaime, J. A. (2023). Biotechnology and biodiversity for the sustainable development of our society. Bionatura, 8(1), 1–2. https://doi.org/10.21931/rb/2023.08.01.1
[32] Husainy, A. S. N., Mangave, S. S., Ingale, A. S., Patil, Y. R., & Koganole, M. (2024). Innovation Ecosystems and Green Building Techniques for a Sustainable Future: Leveraging Advanced Technologies. The Asian Review of Civil Engineering, 13(2), 1–10. https://doi.org/10.70112/tarce-2024.13.2.4233
[33] Theodoulidis, B., Diaz, D., Crotto, F., & Rancati, E. (2017). Exploring corporate social responsibility and financial performance through stakeholder theory in the tourism industries. Tourism Management, 62, 173–188. https://doi.org/10.1016/j.tourman.2017.03.018
[34] Hsieh, J. (2009). Strategic stakeholder orientations and performance consequences—a case of private nonprofit performing arts in the US. International Journal of Nonprofit and Voluntary Sector Marketing, 15(1), 13–27. https://doi.org/10.1002/nvsm.364
[35] Fisunenko, P., & Legostaev, I. (2023). Models of Stakeholder Interaction in the Management of Real Estate Development Projects. Scientific Notes of Taurida National V.I. Vernadsky University. Series: Economy and Management, 73(2). https://doi.org/10.32782/2523-4803/73-2-10
[36]  Maqbool, R., Rashid, Y., & Ashfaq, S. (2022). Renewable energy project success: Internal versus external stakeholders' satisfaction and influences of power‐interest matrix. Sustainable Development, 30(6), 1542-1561. 
[37] Hua, J. (2007). Stakeholder Theory and Corporate Management. Journal of Zhejiang Normal University. 
[38] Burga, R., & Rezania, D. (2016). Stakeholder theory in social entrepreneurship: a descriptive case study. Journal of Global Entrepreneurship Research, 6(1). https://doi.org/10.1186/s40497-016-0049-8
[39] Niekerk, M. van, & Getz, D. (2019). Applying Stakeholder Theory to the Management Functions. In Event Stakeholders. Goodfellow Publishers. https://doi.org/10.23912/9781911396635-4085
[40] Lee, J., Chua, P.C., Chen, L., Ng, P.H., Kim, Y., Wu, Q., Jeon, S., Jung, J., Chang, S., & Moon, S.K. (2023). Key Enabling Technologies for Smart Factory in Automotive Industry : Status and Applications. International Journal of Precision Engineering and Manufacturing-Smart Technology. 
[41] Khan, W.U., Ihsan, A., Nguyen, T.N., Ali, Z., & Javed, M.A. (2022). NOMA-Enabled Backscatter Communications for Green Transportation in Automotive-Industry 5.0. IEEE Transactions on Industrial Informatics, 18, 7862-7874.
[42]  Tubaro, P. and Casilli, A. (2019). Micro-work, artificial intelligence and the automotive industry. Journal of Industrial and Business Economics, 46(3), 333-345. https://doi.org/10.1007/s40812-019-00121-1
[43]   Osburg, V., Yoganathan, V., & Tarba, S. (2022). Can (a)i give you a ride? development and validation of the cruise framework for autonomous vehicle services. Journal of Service Research, 25(4), 630-648. https://doi.org/10.1177/10946705221118233
[44]  Nascimento Panetti, E., Parmentola, A., Ferretti, M., & Reynolds, E. B. (2020). Exploring the relational dimension in a smart innovation ecosystem: A comprehensive framework to define the network structure and the network portfolio. The Journal of Technology Transfer, 45(6), 1775–1796. https://doi.org/10.1007/s10961-019-09735-y
[45]  Copp, C., Cabell, J., & Kemmelmeier, M. (2021). Plenty of blame to go around: attributions of responsibility in a fatal autonomous vehicle accident. Current Psychology, 42(8), 6752-6767. https://doi.org/10.1007/s12144-021-01956-5
[46]  Zhang, M. (2019). Innovation ecosystems for sustainability transition: from policy intervention to stakeholder coalition., 1-10. https://doi.org/10.1109/tems-isie46312.2019.9074176
[47]  Mallinson, D. (2023). The future of ai is in the states: the case of autonomous vehicle policies. Business and Politics, 26(2), 180-199. https://doi.org/10.1017/bap.2023.19
[48]  Yang, G. and Lu, L. (2019). Application of a traffic flow prediction model based on neural network in intelligent vehicle management. International Journal of Pattern Recognition and Artificial Intelligence, 33(03), 1959009. https://doi.org/10.1142/s0218001419590092
[49]  Rhim, J., Lee, J., Chen, M., & Lim, A. (2021). A deeper look at autonomous vehicle ethics: an integrative ethical decision-making framework to explain moral pluralism. Frontiers in Robotics and Ai, 8. https://doi.org/10.3389/frobt.2021.632394
[50]  Kolekar, S., Gite, S., Pradhan, B., & Kotecha, K. (2021). Behavior prediction of traffic actors for intelligent vehicle using artificial intelligence techniques: a review. Ieee Access, 9, 135034-135058. https://doi.org/10.1109/access.2021.3116303
[51]  Bandeira, V., Oliveira, I., Rosa, F., Reis, R., & Ost, L. (2021). An extensive soft error reliability analysis of a real autonomous vehicle software stack. Ieee Transactions on Circuits & Systems Ii Express Briefs, 68(1), 446-450. https://doi.org/10.1109/tcsii.2020.3011367
[52] Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., LaFountain, B., 2020. In: M. S. M. R. a. B. C. Group (Ed.), Expanding AI’s Impact with Organizational Learning. MIT Sloan Management Review and Boston Consulting Group.
[53] García-Holgado, A., Marcos-Pablos, S., & García-Peñalvo, F. J. (2019). A model to define an eHealth technological ecosystem for caregivers. In World conference on information systems and technologies (pp. 422-432). Cham: Springer International Publishing.
[54] Borges, G. (2021, June). AI systems and product liability. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law (pp. 32-39).
[55] Dos Santos, D. A. G., Zen, A., & Bittencourt, B. A. (2021). From governance to choreography: coordination of innovation ecosystems. Innovation & Management Review, 19(1), 26-38.
[56]  Krakowski, S., Luger, J., & Raisch, S. (2023). Artificial intelligence and the changing sources of competitive advantage. Strategic Management Journal, 44(6), 1425-1452.
[57]  Hoseini Moghadam, M. (2022). Artificial Intelligence and the Strategic Future Studies of the Iranian Academia: the Analysis of Goals and Actors. Strategy, 31(3), 441-466. doi: 10.22034/rahbord.2023.382428.1533. [In Persian].
[58]  Guðlaugsson, B., Fazeli, R., Gunnarsdóttir, I., Davidsdottir, B., & Stefansson, G. (2020). Classification of stakeholders of sustainable energy development in Iceland: Utilizing a power-interest matrix and fuzzy logic theory. Energy for Sustainable Development, 57, 168-188.
[59]  Johnson, Gerry, Kevan Scholes, Richard Whittington, and Steve Pyle. 2011. Exploring Strategy : Text & Cases. Harlow, England ; New York: Ft/Prentice Hall.
[60]  Zarei, G., Mohammadkhani, R., & Fathi, H. (2024). Investigating and identifying the consequences of artificial intelligence applications in marketing. Management Research in Iran, 28(2), 1-31 [In Persian].
[61]  Azar, A., Afsar, A., Amir, A., Ahmadi, P. (2021). Comparing classical methods and artificial intelligence in predicting stock price indices and designing a hybrid model. Management Research in Iran, 10(4), 1-16 [In Persian]