نویسندگان

1 استادیار گروه مهندسی نرم افزار، دانشگاه علم و صنعت

2 استادیار گروه مدیریت صنعتی دانشگاه قم

3 دانشجوی کارشناسی ارشد دانشگاه قم

چکیده

مؤسسات اعتباری برای در اختیار قرار دادن انواع تسهیلات اعطایی به مشتریان خود ، نیاز به انجام بررسی های کاملی به منظور شناخت متقاضیان از ابعاد کیفی و کمّی دارند، تا از این طریق، ارزیابی کاملی از سنجش توان بازپرداخت و محاسبه احتمال عدم بازپرداخت تسهیلات و خدمات تأمین مالی از سوی آنان، به عمل آید، این بررسی ها را به طور عام اعتبارسنجی گویند. هدف از انجام این تحقیق رتبه بندی گروه های مشتریان و تعیین بخش های برتر از آنها می باشد تا با استفاده از آن شرکت کارگزاری بتواند عملیات تخصیص اعتبار را به نحوی مکانیزه انجام دهد. در اینجا پس از پیش پردازش اولیه از داده ها ،آنها به شکل مدل RFM پردازش می شوند. سپس با استفاده از شبکه عصبی SOM به عنوان یکی از الگوریتم های خوشه بندی، مشتریان به 10 خوشه تبدیل خواهند شد. در ادامه با استفاده از مدل پیشنهادی، خوشه ها رتبه بندی می شوند. خوشه های برتر شناسایی و عملیات اعطای تسهیلات برای اعضای این خوشه ها انجام می شود. در نهایت سه خوشه 5، 1 و 7 به عنوان خوشه های برتر تعیین شدند که به عنوان مشتریان هدف می باشند. ضریب تسهیلات اعطایی به این سه خوشه برتر به ترتیب 0.271 ، 0.173 و 0.556 می باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Customer credit clustering for Present appropriate facilities

نویسندگان [English]

  • behrooz minaei 1
  • amir afsar 2
  • rahmat houshdar mahjoub 3

چکیده [English]

Credit institutions to provide variety of facilities to their customers, need to comprehensive studies by qualitative and quantitative aspects of their applicants. By this way, accomplish a complete evaluation of repay ability measure and calculate the refund facilities probability and finance services by them , these reviews generally validation name. The purpose of this study was ranking customer groups and specifies the best part of them until brokerage firm do its credit allocation process mechanically. Here, after the preprocessing of the data, they are processes in the RFM model. Then SOM neural network as one of the clustering algorithms will change customers to 10 cluster. Using the proposed model, the clusters will rank. The top clusters, identification and facilities grant operations to the members of these clusters will do. Finally, three clusters 5, 1 and 7 defines as top clusters that they are the target customers. Coefficient facilities granted to the top three clusters respectively are 0.271, 0.173 and 0.556.

کلیدواژه‌ها [English]

  • RFM
  • Credit risk management
  • customer validation
  • SOM neural network