اولویت‌بندی برنامه‌های توسعه فردی مدیران منابع انسانی در حوزه مربیگری با بهره‌گیری از روش دلفی مبتنی بر هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رفتار سازمانی و منابع انسانی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران

2 استادیار، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران

3 دانشیار گروه مدیریت بازرگانی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران

4 دانشیار گروه مدیریت عملیات و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران

10.48311/mri.2025.27635
چکیده
این پژوهش با هدف شناسایی و اولویت‌بندی مهارت‌ها و نیازهای توسعه فردی مدیران منابع انسانی در حوزه مربیگری، به تلفیق روش دلفی سنتی (مبتنی بر دیدگاه‌های خبرگان) با قابلیت‌های روش دلفی مبتنی بر هوش مصنوعی پرداخته است. در راستای ارائه یک الگوی نوآورانه در روش‌شناسی تحقیق، از ظرفیت تحلیل مدل‌های زبانی پیشرفته نظیر ChatGPT، DeepSeek، Perplexity، Microsoft Copilot و Gemini در کنار تجربه و قضاوت انسانی استفاده شده است. پژوهش از نوع کاربردی است، اما به دلیل تمرکز بر توسعه ابزارهای تحلیلی نوین، جنبه‌هایی از پژوهش‌های بنیادی را نیز در برمی‌گیرد. جامعه پژوهش شامل ۱۰ نفر از متخصصان منابع انسانی و پنج مدل زبانی هوش مصنوعی است. گردآوری داده‌ها با استفاده از روش دلفی انجام شده و برای افزایش اعتبار یافته‌ها، رویکرد زاویه‌بندی به ‌کار رفته است. شایان ذکر است که برای طراحی پرسشنامه اولیه، علاوه بر مرور ادبیات، ۱۰۰ شرح شغلی و ۵۰ آگهی شغلی با استفاده از Python تحلیل شده است. نتایج نشان می‌دهد دلفی مبتنی بر هوش مصنوعی توانایی بالایی در تحلیل دقیق و چندلایه مؤلفه‌ها دارد و داده‌هایی با دیدگاه‌های متنوع و چرخشی تولید می‌کند. این فرآیند در پنج مرحله طراحی شده که از نگارش هدفمند پرامپت‌ها آغاز و با اولویت‌بندی مؤلفه‌ها پایان می‌یابد. برای نخستین بار در ایران، این فرآیند به ‌صورت ساختارمند در حوزه توسعه فردی و پژوهش‌های علمی اجرا شده و می‌تواند در ترکیب با دلفی انسانی، دقت تحلیل و کیفیت تصمیم‌سازی در مطالعات را به‌طور معناداری ارتقا دهد.

کلیدواژه‌ها


عنوان مقاله English

Prioritizing personal development programs for human resource managers in the field of coaching using the Delphi method based on artificial intelligence

نویسندگان English

zahra pooramini 1
hamed dehghanan 2
mahdi yazdanshenas 3
Iman raeesi 4
1 PHD Student in Organizational Behavior and Human Resources, Faculty of Management and Accounting, , Allameh Tabatabai University, Tehran, Iran
2 Assistant Professor, faculty of management and accounting, Allameh Tabataba'i University, Tehran, Iran.
3 Associate Professor, Department of Business Administration, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
4 Associate Professor, Department of Management Operations and Information Technology, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
چکیده English

This research, with the aim of providing more accurate and effective solutions, has used the Delphi method based on artificial intelligence and expert opinions to identify and prioritize the needs and personal development skills of human resource managers. This research is applied in terms of its purpose, which seeks to combine the human-based Delphi method (traditional) and artificial intelligence (modern), to provide an innovative approach in the field of research methods and data analysis that can be classified as fundamental research. The statistical population of the research is 15 experts in the fields of human resources, coaching and personal development and three types of language models such as Microsoft Copilot, Chat GPT and Gemini. The data collection tool in this research was the Delphi method, and the angle method was also used to examine the validity of the data. The findings showed that the Delphi method based on artificial intelligence analyzes the components with high speed and accuracy and provides access to rotational data. This method consists of 5 stages that begin with precise prompt writing. This method is best used as a complementary method along with human methods.

کلیدواژه‌ها English

Coaching
personal development
artificial intelligence and the Delphi method
[1] FENG Zhiqing. (2019). “Deep-time digital basin” based on big data and artificial intelligence. ACTA GEOLOGICA SINICA(English edition), 93(z1), 14-16.
[2] O’Cass, A., & Wetzels, M. (2018). Contemporary issues and critical challenges on innovation in services. Journal of Product Innovation Management, 35(5), 674-681. https://doi.org/10.1111/jpim.12464
[3] Shokri Khiyadani, Masoud, & Yaghtin, Mohammad Hossein. (2024). Fuzzy cognitive mapping of factors influencing decision-making toward digitalization of human resource management. Modern Research in Decision Making, 9(1), 154–178. [in Persian].
[4] Mazrouei Nasrabadi, E., & Sadeghi Arani, Z. (2023). Strategic analysis of Industry 4.0 adoption factors in healthcare: A scenario analysis approach. Modern Research in Decision Making, 8(3), 79–102. [in Persian].
[5] Rasool, J. (2025). Coaching 5.0, coaching for the fifth industrial revolution. Frontiers in Virtual Reality, 5, 1474053. https://doi.org/10.3389/frvir.2024.1474053
[6] Von Krogh, G., 2018. Artificial intelligence in organizations: new opportunities for phenomenon-based theorizing. Acad. Manag. Discov. 4, 404–409. https://doi.org/10.5465/amd.2018.0084.
[7] Bughin, J., Manyika, J., & Woetzel, J. (2017). A Future That Works: Automation, Employment, and Productivity. McKinsey Global Institute.
[8] Passmore, J. (2010). A grounded theory study of the coachee experience: The implications for training and practice in coaching psychology. International Coaching Psychology Review, 5, 48–62.
[9] Fischer, R. L., & Beimers, D. (2009). “Put me in, Coach”: A pilot evaluation of executive coaching in the nonprofit sector. Nonprofit Management and Leadership, 19(4), 507-522.  https://doi.org/10.1002/nml.234.
[10] Jones, R. J., Woods, S. A., & Guillaume, Y. R. (2016). The effectiveness of workplace coaching: A meta-analysis of learning and performance outcomes from coaching. Journal of Occupational and Organizational Psychology, 89, 249–277.  https://doi.org/10.1111/joop.12119.
[11] Theeboom, T., Beersma, B., & van Vianen, A. E. (2014). Does coaching work? A meta-analysis on the effects of coaching on individual level outcomes in an organizational context. The Journal of Positive Psychology, 9, 1–18.222. https://doi.org/10.1080/17439760.2013.837499.
[12] Terblanche, N., Passmore, J., & Myburgh, J. (2021). African organizational coaching practice Exploring approaches used, and the factors influencing coaches’ fees. South African Journal of Business Management, 52(1).  10.4102/sajbm.v52i1.2395. 
[13] Athanasopoulou, A., & Dopson, S. (2018). A systematic review of executive coaching outcomes: Is it the journey or the destination that matters the most? The Leadership Quarterly, 29(1), 70–88. https://doi.org/10.1016/j.leaqua.2017.11.004. https://doi.org/10.1016/j.leaqua.2017.11.004.
[14] Blackman, A., Moscardo, G., & Gray, D. E. (2016). Challenges for the theory and practice of business coaching: A systematic review of empirical evidence. Human Resource Development Review, 15(4), 459–486. https://doi.org/10.1177/1534484316673177.
[15] Bachkirova, T., Cox, E. and Clutterbuck, D. (2014) 'Introduction', in Cox, E., Bachkirova, T. and Clutterbuck, D. (eds.) The complete handbook of coaching (2nd edn.). London: Sage, pp.1-20.
[16] Zhu, W. (2020, April). Reconstruction of human resource management under big data and artificial intelligence. In Journal of Physics: Conference Series, Vol. 1533, No. 4, p. 042016. 10.1088/1742-6596/1533/4/042016. 
[17] Palmer, S., & Panchal, S. (Eds.). (2012). Developmental coaching: Life transitions and generational perspectives. Routledge.
[18] Susing, I., & Cavanagh, M. J. (2013). At the intersection of performance: Personality and adult development in coaching. International Coaching Psychology Review, 8(2), 58-69.
[19] Graßmann, C., Schölmerich, F., & Schermuly, C. C. (2019). The relationship between working alliance and client outcomes in coaching: a meta-analysis. Human Relations, 73(1), 35–58. https://doi.org/10.1177/0018726718819725. 
[20] Poepsel, M. A. (2011). The impact of an online evidence-based coaching program on goal striving, subjective well-being, and level of hope (Doctoral dissertation).
[21] Geissler, H., Hasenbein, M., Kanatouri, S., & Wegener, R. (2014). E-Coaching: Conceptual and empirical findings of a virtual coaching programme. International Journal of Evidence Based Coaching and Mentoring, 12(2), 165–186.
[22] Fleming, T., Bavin, L., Lucassen, M., Stasiak, K., Hopkins, S., & Merry, S. (2018). Beyond the trial: Systematic review of real-world uptake and engagement with digital self-help interventions for depression, low mood, or anxiety. Journal of Medical Internet Research, 20, e199. 10.2196/jmir.9275. 
[23] Terblanche, N., & Cilliers, D. (2020). Factors that influence users’ adoption of being coached by an Artificial Intelligence Coach. Philosophy of Coaching: An International Journal, 5(1), 61-70. http://dx.doi.org/10.22316/poc/05.1.06.
[24] Asmaeili, A., Rahimi, F. A., & Nadāf. (2021). Investigating the effect of organizational coaching on individual counterproductive work behaviours in the workplace: The mediating role of positive organisational climate. Journal of Management Research in Iran, 21(3), 167–191. . [in Persian].
[25] Qamar, Y., Agrawal, R. K., Samad, T. A., & Chiappetta Jabbour, C. J. (2021). When technology meets people: the interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339-1370. https://doi.org/10.1108/JEIM-11-2020-0436.  
[26] Berhil, S., Benlahmar, H., & Labani, N. (2020). A review paper on artificial intelligence at the service of human resources management. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 32-40. 10.11591/ijeecs.v18.i1.pp32-40. 
[27] Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2023). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. Artificial intelligence and international HRM, 172-201.
[28] Venusamy, K., Rajagopal, N. K., & Yousoof, M. (2020, December). A study of human resources development through chatbots using artificial intelligence. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 94-99). IEEE.  10.1109/ICISS49785.2020.9315881
[29] Korzynski, P., Mazurek, G., Krzypkowska, P., & Kurasinski, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25-37.
[30] Heale, R., & Forbes, D. (2013). Understanding triangulation in research. Evidence-based nursing, 16(4), 98-98. https://doi.org/10.1136/eb-2013-101494. 
[31] Zarei, G., Mohammadkhani, R., & Fathi, H. (2024). Investigating and identifying the consequences of applying artificial intelligence in marketing. Journal of Management Research in Iran, 28(2), 1–31. [in Persian].