شناسایی مشتریان سودآور بر اساس مدل RFM و تنوع محصولات در پلتفرم های خرده فروشی آنلاین
دوره 29، شماره 1، فروردین 1404، صفحه 73-95
https://doi.org/10.48311/mri.2025.671
فاطمه قبائی آرانی؛ معصومه حسینزاده شهری
چکیده رفتار مصرف کننده یک جنبه حیاتی از استراتژی بازاریابی است که شامل درک عادات خرید، انگیزه ها و ترجیحات مشتریان است. درک بهتر رفتار مشتری از طریق روش های نوآورانه ذخیره سازی و تجزیه و تحلیل داده ها و اطلاعات مشتریان، تدوین استراتژی های اثربخش تری را موجب می شود. ظهور فناوریهای محاسباتی جدید تغییرات عمدهای را در توانایی سازمانها برای جمعآوری، ذخیره و تجزیه و تحلیل دادههای کلان ایجاد کرده است. بسیاری از تحقیقات با استفاده از الگوریتمهای یادگیری ماشین بدون نظارت مانند K-Means با استفاده از مدل معروفRFM به طبقه بندی مشتری پرداختهاند اما این مدل ها با نادیده گرفتن سایر پارامترهای مهم با توجه به حوزه کاربرد، ناکافی می باشند. این تحقیق از نظر هدف کاربردی و از نظر گردآوری داده ها توصیفی و از نوع تحقیقات کمی است که با استفاده از 200000 تراکنش مشتریان فروشگاه خرده فروشی آنلاین طی بازه زمانی 2013 تا 2018 انجام شده است. مدل، با افزودن تنوع "D" به عنوان پارامتر چهارم، با اشاره به تنوع محصولات خریداری شده توسط یک مشتری معین، اصلاح شده است. طبقه بندی بر اساس RFM-D در بازار خرده فروشی آنلاین به منظور شناسایی الگوهای رفتاری برای مشتری اعمال می شود. بررسی رفتار مشتریان خوشه ها نشان داد که تنوع محصولات به همراه سایر متغیرهای رفتاری، سودآوری بیشتری نسبت به مدل RFM ارائه کرده است.