سیدحیدر میرفخرالدینی؛ حمید بابایی میبدی؛ علی مروتی شریف آبادی
دوره 17، شماره 2 ، تیر 1392، ، صفحه 196-222
چکیده
طی دهه های اخیر، انرژی در کنار سایر عوامل تولید نقش تعیین کننده ای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. وابستگی روزافزون به انرژی موجب تعامل این بخش با سایر بخشهای اقتصادی شده و سرعت در روند رشد و توسعه ی اقتصادی را وابسته به سطح مصرف انرژی کرده است، به طوری که طی دهه های اخیر، رشد اقتصادی جهان و روند صنعتی ...
بیشتر
طی دهه های اخیر، انرژی در کنار سایر عوامل تولید نقش تعیین کننده ای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. وابستگی روزافزون به انرژی موجب تعامل این بخش با سایر بخشهای اقتصادی شده و سرعت در روند رشد و توسعه ی اقتصادی را وابسته به سطح مصرف انرژی کرده است، به طوری که طی دهه های اخیر، رشد اقتصادی جهان و روند صنعتی شدن، موجب افزایش تقاضا و مصرف انرژی شده است. در این صورت به منظورکنترل پارامترهای عرضه و تقاضای انرژی و برنامه ریزی صحیح در هدایت مصرف آن بایستی مصرف انرژی را به صورت دقیق پیش بینی نمود. هدف از این مقاله کاربست مدل ترکیبی شبکه های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی مصرف انرژی ایران می باشد. لذا در این بررسی، از داده های سالانه مصرف انرژی کشور به عنوان متغیر خروجی مدل پیش بینی و از داده های سالانه جمعیت کل کشور، تولید ناخالص داخلی، واردات و صادرات به عنوان متغیرهای ورودی مدل های پیش بینی استفاده شده است. در پایان به منظور مقایسه نتایج پیش بینی مدل ترکیبی مذکور با مدل های شبکه ی عصبی و رگرسیون چند متغیره، از شاخص های ارزیابی خطای استاندارد نسبی (RSE)، میانگین خطا (ME) و مجذور میانگین مربعات خطا (RMSE) استفاده شد. نتایج ارزیابی نشان داد که الگوی ترکیبی شبکه های عصبی و الگوریتم ژنتیک (ANN-GA)، نسبت به سایر مدل ها دارای بالاترین دقت در پیش بینی مصرف انرژی کشور می باشد.